Influence of Stacking Fault Energy on the Grain Size of FCC Metals Fabricated by Accumulative Roll Bonding Process

Article Preview

Abstract:

In this study, the effect of stacking fault energy on the grain size of aluminum, copper, and brass fabricated via accumulative roll bonding (ARB) process was investigated. Evolution of microstructure of the samples was investigated by transmission electron microscopy (TEM). It was found that occurrence of the recrystallization (both continuous and discontinuous) in the copper and brass led to the formation of nanograins with mean size of 80, and 40 nm, respectively; while, the mean grain size of aluminum was 250 nm. Differences in microstructural evolution during processing of aluminum, copper, and brass was related to their stacking fault energies (SFEs). When the SFE decreased, grain refinement occurred more easily and the measured grain size was smaller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-137

Citation:

Online since:

December 2014

Export:

Price:

[1] R Jamaati and MR Toroghinejad: Mater. Des. Vol. 31 (2010), p.4816.

Google Scholar

[2] R, Jamaati, MR. Toroghinejad, J. Dutkiewicz and JA. Szpunar: Mater. Des. Vol. 31 (2013), p.274.

Google Scholar

[3] MJ Zehetbauer and YT Zhu: Bulk Nanostructured Materials (WILEY-VCH Verlag GmbH & Co. KGaA Weinheim 2009).

Google Scholar

[4] R. Jamaati, MR. Toroghinejad, JA. Szpunar and D. Li: J. Mater. Eng. Perform. Vol. 20 (2011), p.1600.

Google Scholar

[5] RZ Valiev: Nature Mater. Vol. 3 (2004), p.511.

Google Scholar

[6] R. Jamaati, MR. Toroghinejad, JA. Szpunar and D. Li: Tribology Vol. 5 (2011), p.10.

Google Scholar

[7] RZ. Valiev, AV. Korznikov and RR. Mulyukov: Mater. Sci. Eng. A Vol. 168 (1993), p.141.

Google Scholar

[8] MR. Toroghinejad, F. Ashrafizadeh and R. Jamaati: Mater. Sci. Eng. A Vol. 561 (2013), p.145.

Google Scholar

[9] RZ. Valiev, RK. Islamgaliev and IV. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[10] R. Jamaati, MR. Toroghinejad, J. Dutkiewicz and JA. Szpunar: Mater. Des. Vol. 35 (2012), p.37.

Google Scholar

[11] RZ. Valiev and TG. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[12] M. Raei, MR. Toroghinejad and R. Jamaati: Mater. Manuf. Proc. Vol. 26 (2011), p.1352.

Google Scholar

[13] RZ. Valiev, NA. Krasilnikov and NK. Tsenev: Mater. Sci. Eng. A Vol. 197 (1991), p.35.

Google Scholar

[14] RZ. Valiev: Mater. Sci. Eng. A Vol. 234–236 (1997), p.59.

Google Scholar

[15] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and RG. Hong: Scripta Mater. Vol. 39 (1998), p.1221.

Google Scholar

[16] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

Google Scholar

[17] R. Jamaati, S. Amirkhanlou, MR. Toroghinejad and B. Niroumand: Mater. Sci. Eng. A Vol. 528, (2011), p.2495.

Google Scholar

[18] YH. Zhao, YT. Zhu, XZ. Liao, Z. Horita and TG. Langdon: Mater. Sci. Eng. A Vol. 463 (2007), p.22.

Google Scholar

[19] CX. Huang, W. Hu, G. Yang, ZF. Zhang, SD. Wu, QY. Wang and G. Gottstein: Mater. Sci. Eng. A Vol. 556 (2012), p.638.

Google Scholar

[20] YH. Zhao, XZ. Liao, YT. Zhu, Z. Horita and TG. Langdon: Mater. Sci. Eng. A Vol. 410–411 (2005), p.188.

Google Scholar

[21] FJ. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier Science Ltd. ) second ed. (Oxford, United Kingdom 2004).

Google Scholar

[22] RD. Doherty, DA. Hughes, FJ. Humphreys, JJ. Jonas, D. Juul Jensen, ME. Kassner, WE. King, TR. McNelly, HJ. McQueen and AD. Rollett: Mater. Sci. Eng. A Vol. 238 (1997), p.219.

DOI: 10.1016/s0921-5093(97)00424-3

Google Scholar

[23] R. Jamaati, MR. Toroghinejad: J. Mater. Eng. Perform. Vol. 20 (2011), p.191.

Google Scholar

[24] H. Pirgazi, A. Akbarzadeh, R. Petrov and L. Kestens: Mater. Sci. Eng. A Vol. 497 (2008), p.132.

Google Scholar

[25] M. Eizadjou, H. Danesh Manesh and K. Janghorban: J. Alloys Compd. Vol. 474 (2009), p.406.

Google Scholar

[26] MR. Toroghinejad, R. Jamaati, M. Hoseini, JA. Szpunar and J. Dutkiewicz: Metal. Mater. Trans. A Vol. 44 (2013), p.1587.

Google Scholar

[27] N. Takata, SH. Lee and N. Tsuji: Mater. Lett. Vol. 63 (2009), p.1757.

Google Scholar

[28] M. Shaarbaf and MR. Toroghinejad: Metall. Mater. Trans. A Vol. 40 (2009), p.1693.

Google Scholar