Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition

Article Preview

Abstract:

The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-10

Citation:

Online since:

July 2016

Export:

Price:

* - Corresponding Author

[1] M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Prog. Polym. Sci. 38 (2013) 1929–(1940).

DOI: 10.1016/j.progpolymsci.2013.05.001

Google Scholar

[2] F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen. E. Kold, Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethylene-terephthalate, Sol. Energy Mater. Sol. Cells 83 (2004).

DOI: 10.1016/j.solmat.2004.02.031

Google Scholar

[3] D. Kim, S. Kwon, K. Lee, J. Jang, Efficient bulk heterojunction organic solar cell with antireflective subwavelength structure, Appl. Surf. Sci. 332 (2015) 716–719.

DOI: 10.1016/j.apsusc.2015.02.003

Google Scholar

[4] Y. Lin, Q. Wei, G.Q. Yao, J. Watkins, Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding, Macromolecules 45 (2012) 8665-8673.

DOI: 10.1021/ma3019393

Google Scholar

[5] S. Ren, L. Chang, S. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Inorganic-organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires, Nano lett. 11 (2011) 3998-4002.

DOI: 10.1021/nl202435t

Google Scholar

[6] N. Radychev, I. Lokteva, F. Witt, J.K. Olesiak, H. Borchert, J. Parisi, Physical origin of the impact of different nanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells, J. Phys. Chem. 115 (2011) 14111-14122.

DOI: 10.1021/jp2040604

Google Scholar

[7] M. Wamg, X. Wang, P3HT/ZnO bulk-heterojunction solar cell sensitized by a perylene derivative, Sol. Energy Mater. Sol. Cells 92 (2008) 766–771.

DOI: 10.1016/j.solmat.2008.01.015

Google Scholar

[8] S.V. Bhat, A. Govindaraj, C.N.R. Rao, Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration, Sol. Energy Mater. Sol. Cells 95 (2011) 2318–2321.

DOI: 10.1016/j.solmat.2011.03.047

Google Scholar

[9] F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Sol. Energy Mater. Sol. Cells 93 (2009) 394–412.

DOI: 10.1016/j.solmat.2008.10.004

Google Scholar

[10] K. Norrman, A.G. Siahkali, N.B. Larsen, 6 Studies of spin-coated polymer films, Annu. Rep. Prog. Chem., Sect. C 101 (2005) 174–201.

DOI: 10.1039/b408857n

Google Scholar

[11] B.G. Prevo, O.D. Velev, Controlled rapid deposition of structured coatings from micro- and nanoparticle suspensions, Langmuir 20 (2004) 2099-2107.

DOI: 10.1021/la035295j

Google Scholar

[12] P. Kumnorkaew, Y.K. Ee, N. Tansu, J.F. Gilchrist, Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays, Langmuir 24 (2008)12150-12157.

DOI: 10.1021/la801100g

Google Scholar

[13] S.H. Oh, S.J. Heo, J.S. Yang, H.J. Kim, Effects of ZnO nanoparticles on P3HT: PCBM organic solar cells with DMF-modulated PEDOT: PSS buffer layers, ACS Appl. Mater. Interfaces 5 (2013) 11530−11534.

DOI: 10.1021/am4046475

Google Scholar

[14] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science 270 (1995) 1789-1791.

DOI: 10.1126/science.270.5243.1789

Google Scholar