Process to Increase the Output of Z-Folded Separators for the Manufacturing of Lithium-Ion Batteries

Article Preview

Abstract:

The electrification of drives is an enormous challenge as well as an opportunity for the automobile industry and its suppliers to provide competitive and affordable technologies to participate within this change. The high costs of battery systems, the range limitations of electric vehicles and the insufficient charging network are three of the main reasons, this change is still troublesome in its realization. To realize a cost-efficient production of battery systems, a high degree of automation and an increased production throughput is necessary. This paper focuses on the pouch cell with its high energy density and presents a solution, of how to significantly increase the production throughput in the z-folding of separators. The approach pursued is the assessment of shifting from discrete pick-and-place operations to a continuous process flow, enabling a cost-efficient production of electrode-separator compounds and ultimately lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] Bernhart, W., Schlick, T.: Automotive Lithium-Ion Batteries – Status and Outlook. Roland Berger Strategy Consultants. In: Kraftwerk Batterie – Lösung für Automobil und Energieversorgung. Aachen, p. 2ff, (2015).

Google Scholar

[2] Valentine-Urbschat, M.; Bernhart, W.: Powertrain 2020 - The Future Drives Electric. Study, Roland Berger Strategy Consultants, p.3, (2009).

Google Scholar

[3] N. N.: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). Autofahren 2040. DLR simuliert Entwicklung des Fahrzeugmarktes, 2011, Information on: www. dlr. de/dlr/presse/desktopdefault. aspx/tabid-10310/473_read-689/year-all [25/3/15].

DOI: 10.21687/0233-528x-2019-53-3-81-88

Google Scholar

[4] Hoffman, P.: Hybridfahrzeuge. Heidelberg, Springer-Verlag (2010).

Google Scholar

[5] Kampker, A., Burggräf, P., Deutskens, C.: Produktionsstrukturen für Komponenten zukünftiger Elektrofahrzeuge. ATZ produktion. Heft 2, pp.48-53, (2010).

DOI: 10.1007/bf03224133

Google Scholar

[5] Bernhart, W.: Powertrain 2020. The Li-Ion Battery Value Chain - Trends and implications. Roland Berger Strategy Consultants, p.26, (2011).

Google Scholar

[6] Kampker, A.; Deutskens, C.; Heimes, H.; Nowacki, C.; Maiser, E.; Michaelis, S.: Der Produktionsprozess einer Lithium-Ionen-Folienzelle. RWTH-WZL, VDMA, Aachen, (2012).

Google Scholar

[7] Schmitz, P.: Laserstrahlen in der Batterieproduktion - Flexibler Beschnitt von Elektrodenfolien. Bayern-Photonics, 2014, Information on: http: /www. bayern-photonics. de/inhalte/news/14_q2/laserstrahlschneiden [25/3/15].

Google Scholar

[8] VDMA Batterieproduktion, PEM der RWTH Aachen, Fraunhofer ISI: Roadmap Batterie-Produktionsmittel 2030. VDMA Batterieproduktion, Frankfurt am Main, (2014).

Google Scholar

[9] Reinhart, G.; Kurfer, J.: Handhaben in der Batteriefertigung - Forschungs- und Demonstrationszentrum für Lithium-Ionen-Zellen. Werkstattstechnik Online, Volume 9, pp.545-550, (2011).

DOI: 10.37544/1436-4980-2011-9-545

Google Scholar

[10] Kampker, A.; Valée, D.; Schnettler, A.: Elektromobilität. Grundlagen einer Zukunftstechnologie, Springer Vieweg, p.302, (2013).

DOI: 10.1007/978-3-642-31986-0

Google Scholar

[11] Reinhart, G., et al.: Research and Demonstration Center for the Production of Large-Area Lithium-Ion Cells. In: Future Trends in Production Engineering. Proceedings of the First Conference of the German Academic Society for Production Engineering, Berlin, pp.3-12, (2011).

DOI: 10.1007/978-3-642-24491-9_1

Google Scholar

[12] Zäh, M.F., Schmitz, P., Westermeier, M.: Produktionsforschung für den elektrischen Antriebsstrang. In: Produktionskongress 2014, 18. -19. 03. 2014 in Garching/München, pp.98-110, (2014).

Google Scholar

[13] Kampker, A.: Elektromobilproduktion. Springer Vieweg, Berlin, Heidelberg, p.54, (2014).

Google Scholar

[14] Savage, D.R.: Method and apparatus for assembling battery cell elements. U.S. Patent 4479300A, (1984).

Google Scholar

[15] Hong, J. -J.: Packaging apparatus for an automated manufacturing system of lithium secondary battery. Patent WO2002095845A1, (2002).

Google Scholar

[16] Kadowaki, M.; Abe, K.; Ozawa, K.: Device for stacking successive separator and sheet electrode. U.S. Patent 20100132308A1, (2010).

Google Scholar

[17] Park, H. C.; Kim, S. B.; Lee, S. N.; Kim, C. J.: Method for stacking cells inside secondary battery and cell stack manufactured using same. Patent WO2014042424A1, (2014).

Google Scholar

[18] Bidian, P.; Steinmetz, H.; Pfister,U.; Berger, R.: Verfahren und Vorrichtung zum Herstellen eines Elektrodenstapels. DE Patent 102012000615A1, (2013).

Google Scholar

[19] Zeilinger, T.; Kurfer, J.; Westermeier, M. et al.: Entwicklung und Erprobung eines modularen Montagesystems zur automatisierten Zellfertigung. Ergebnisvorstellung DeLIZ in Abschlusskolloquium Produktion für Elektromobilität, p.103, (2011).

Google Scholar

[20] DIN SPEC 91252: 2011-01 (D): Elektrische Straßenfahrzeuge - Batteriesysteme - Abmessungen für Lithium-Ionen-Zellen, p.7, (2011).

Google Scholar

[21] GEESUN Automation Technology: Products. China, 2014. Information on: www. geesun. com/en/product_show. asp?id=11. [25/3/15].

Google Scholar

[22] HI-MECHA CORPORATION: Electrode Stacking Machine. Hi-Mecha Company Inc., Japan, 2014. Information on: www. hi-mecha. co. jp/english/denseki. html. [15/5/15].

Google Scholar

[23] CKD Corporation: CEW-100 - Lithium-ion battery winding machine. Japan, 2014. Information on: www. ckd. co. jp/auto/english/machine/industry/detail/CEW-100. html. [30/5/15].

Google Scholar