A Stochastic Model with Saturation Infection for Internal HIV Dynamics

Article Preview

Abstract:

In this paper, a stochastic model with a saturation infection rate representing HIV internal virus dynamics is investigated. We prove that the model exists non-negative solutions. Then we analyse the asymptotic behavior of the model. Finally, numerical simulations are presented to illustrate our mathematical findings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1546-1551

Citation:

Online since:

January 2015

Export:

Price:

* - Corresponding Author

[1] D. Li, W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, Journal of Mathematical Analysis and Applications. 335(2007) 683-691.

DOI: 10.1016/j.jmaa.2007.02.006

Google Scholar

[2] P. K. Srivastava, P. Chandra, Modeling the dynamics of HIV and CD4+ T cells during primary infection, Nonlinear Analysis: Real World Applications. 11(2010) 612-618.

DOI: 10.1016/j.nonrwa.2008.10.037

Google Scholar

[3] M. D. Mascio, R. Ribeiro, M. Markowitz, D. Ho, A. Perelson, Modelling the long term control of viraemia in HIV-1 infected patients treated with antiretroviral therapy, Mathematical Biosciences. 188(2004) 47-62.

DOI: 10.1016/j.mbs.2003.08.003

Google Scholar

[4] M. Abell, J. Braselton, L. Braselton, The effects of immunity and resistance on the development of AIDS, Journal of Mathematical Analysis and Applications. 333(2007) 8-23.

DOI: 10.1016/j.jmaa.2006.12.021

Google Scholar

[5] P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences. 179(2002) 73-94.

DOI: 10.1016/s0025-5564(02)00099-8

Google Scholar

[6] M. Pitcha, C. Monica, M. Divya, Stability analysis for HIV infection delay model with protease inhibitor, Biosystems. 114(2013) 118-124.

DOI: 10.1016/j.biosystems.2013.08.003

Google Scholar

[7] R. X, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Computers and Mathematics with Applications. 61(2011) 2799-2805.

DOI: 10.1016/j.camwa.2011.03.050

Google Scholar

[8] D. Q. Jiang, C. Y. Ji, N. Z. Shi, J. J. Yu, The long time behavior of DI SIR epidemic model with stochastic perturbation, Journal of Mathematical Analysis and Applications. 372(2010) 162-180.

DOI: 10.1016/j.jmaa.2010.06.003

Google Scholar

[9] L. Wang, Global Mathematical Analysis of an HIV-1 Infection Model with Holling Type-II Incidence, Communications in Applied Analysis. 15(2011) 47-56.

Google Scholar

[10] A. Bahar, X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications. 292(2004) 364-380.

DOI: 10.1016/j.jmaa.2003.12.004

Google Scholar

[11] C. A. Braumann, Variable effort harvesting models in random environments: Generalisation to density-dependent noise intensities, Mathematical Biosciences. 177(2002) 229-245.

DOI: 10.1016/s0025-5564(01)00110-9

Google Scholar

[12] T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York, (1988).

Google Scholar

[13] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses Applications. 97(2002) 95-110.

DOI: 10.1016/s0304-4149(01)00126-0

Google Scholar

[14] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, (1997).

Google Scholar