In Vivo and In Vitro Studies of Biodegradable WE43 Stent

Article Preview

Abstract:

Magnesium alloys are very biocompatible and show promise for use in implant device. The focus of this article lies in the evaluation of the degradation performance and biological response of a paclitaxel-eluting biodegradable stent based on WE43 magnesium alloy by in vivo and in vitro studies. The corrosion characteristics analyzed by immersion testing in phosphate buffered solution (PBS) for 24h. Severe corrosion took place reveal fast degradation, lead to the stent strut easily fracture during expanding. The chemical nature of this conversion in vivo was investigated by scanning electron microscope (SEM) equipped with energy dispersive spectrum (EDS). For the endothelial surface coverage and the microstructure of the stent were also investigated by SEM. The results show that the deployment of the stent in arteries was safe, endothelial coverage occurred above stent struts and between struts after implanted 6 weeks, and more slowly than stainless steel stent and paclitaxel-eluting stainless steel stent. The grains boundaries of the stents are easily corroded in vivo environment, which should strongly affect the radial strength and mechanical integrity of the stent, leading early recoil contribute to restenosis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-76

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] G.D. Dangas, B.E. Claessen, A. Caixeta, E.A. Sanidas, et al. In-Stent Restenosis in the Drug-Eluting Stent Era, J Am Coll Cardiol. 56(2010)1897-(1907).

DOI: 10.1016/j.jacc.2010.07.028

Google Scholar

[2] F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds, Part I. Appropriate inflammatory response, J Biomed Mater Res A. 81(2007) 748-765.

DOI: 10.1002/jbm.a.31170

Google Scholar

[3] S.Y. Cho, S.W. Chae, K.W. Choi, H.K. Seok, et al. Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants, J Biomed Mater Res Part B: Appl Biomater 00B(2012)1-12.

DOI: 10.1002/jbm.b.32813

Google Scholar

[4] A. Drynda, N. Deinet, N. Braun, M. Peuster, Rare earth metals used in biodegradable magnesium- based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes, J Biomed Mater Res A. 91(2009).

DOI: 10.1002/jbm.a.32235

Google Scholar

[5] R. Erbel, C.D. Mario, J. Bartunek, J. Bonnier, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369(2007) 1869-1875.

DOI: 10.1016/s0140-6736(07)60853-8

Google Scholar

[6] R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter Cardiovasc Interven. 68(2006)607-617.

DOI: 10.1002/ccd.20727

Google Scholar

[7] R. Waksman, R. Erbel, C.D. Mario, J. Bartunek, et al. Early- and Long-Term Intravascular Ultrasound and Angiographic Findings After Bioabsorbable Magnesium Stent Implantation in Human Coronary Arteries. J Am Coll Cardiol Intv. 2(2009) 312-320.

DOI: 10.1016/j.jcin.2008.09.015

Google Scholar

[8] L.L. Rokhlin, T.V. Dobatkina I.F. Tarytina, V.N. Timofeev, et al. Peculiarities of the phase relations in Mgrich alloys of the Mg-Y-Nd system, Journal of Alloys and Compounds. 367 (2004)17-19.

DOI: 10.1016/j.jallcom.2003.08.004

Google Scholar

[9] M.M. Avedesian, H. Baker (Eds. ), ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, The Materials Information Society, Ohio, 1999: 16-17.

Google Scholar

[10] X.N. Gu , W.R. Zhou , Y.F. Zheng , Y. Cheng , et al. Corrosion fatigue behaviors of two biomedical Mg alloys–AZ91D and WE43– In simulated body fluid. Acta Biomaterial. 6(2010) 4605-4613.

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar

[11] H. Kalb, A. Rzany, B. Hensel . Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid. Corrosion Science. 57(2012)122-130.

DOI: 10.1016/j.corsci.2011.12.026

Google Scholar

[12] R. Zeng , W. Dietzel , F. Witte ,N. Hort , C. Blawert , Progress and challenge for magnesium alloys as biomaterials, Advanced Engineering Materials. 10(2008): B3-B14.

DOI: 10.1002/adem.200800035

Google Scholar

[13] R. Arrabal , E. Matykina , F. Viejo , P. Skeldon, G.E. Thompson. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science. 50( 2008)1744-1752.

DOI: 10.1016/j.corsci.2008.03.002

Google Scholar

[14] C.D. Mario,P. Barlis, J. Tanigawa. Coronary bioabsorbable magnesium stent: 15- month intravascular ultrasound and optical coherence tomography findings. Eur. Heart J. 28( 2007)2319-2319.

DOI: 10.1093/eurheartj/ehm119

Google Scholar

[15] A. Loos,R. Rohde, A. Haveich, S. Barlach. In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol Symp. 253(2007)103-108.

DOI: 10.1002/masy.200750715

Google Scholar

[16] R. Rettig , S. Virtanen , Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids, J Biomed Mater Res Part A. 88(2008) 359-369.

DOI: 10.1002/jbm.a.31887

Google Scholar

[17] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, et al. Hardening precipitati-on in a Mg-4Y-3RE alloy, Acta Mater. 51( 2003) 5335-5348.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[18] T. Rzychoń, A. Kielbus, Microstructure of WE43 casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering. 21(2007)31-34.

Google Scholar

[19] M. Joner, G. Nakazawa, A.V. Finn, S.C. Quee, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 52(2008) 333-342.

DOI: 10.1016/j.jacc.2008.04.030

Google Scholar

[20] X.Q. Chen, Q.S. Yin, Y. Zhang, H. Xia, et al. Sensitization test of magnalium a the maximal dosage, Journal of Clinical Rehabilitative Tissue Engineering Research. 14(2010)2899-2902.

Google Scholar

[21] X.N. Gu, Y.F. Zheng, Y. Cheng, S. P Zhong, T.F. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials. 30(2009)484-498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[22] M. Haude, R. Erbel, P. Erne, S. Verheye, et al. Safety and performance of the drug-eluting absorbable metal scaff old (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 381(2013).

DOI: 10.1016/s0140-6736(12)61765-6

Google Scholar