The Effect of Natural Clays Catalysts on Thermal Degradation of a Plastic Waste Mixture

Article Preview

Abstract:

The thermal and catalytic degradation of a plastic wastes mixtures using two types of natural clays catalysts has been carried out in order to obtaining liquid oils with potential use in the chemical industry. Thus, the polymer waste mixture (PWM) of polystyrene (PS), poly (ethylene terephthalate) (PET) and poly (vinyl chloride) (PVC) were thermally degraded at 420 °C in absence and presence of studied catalysts in mass ratio 1:10, catalyst/PWM. The catalysts were characterized by N2 adsorption-desorption isotherms (BET), Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectrometry (FTIR) for determined the structural and textural properties. The degradation of plastic wastes produces gases, liquids and solid residue products. The effect of the catalyst types on the yields and distribution of end-products obtained by thermal and catalytic degradation of mixed plastic waste has been studied. The yields of liquid oils fractions were calculated between 54.98 wt.% and 62.18 wt.%. The liquids and solid products were analyzed by different analytical techniques: gas chromatography mass spectrometry (GC-MS), ultraviolet visible spectroscopy (UV-Vis) and/or FTIR, in order to establish the chemical compositions. The GC-MS results showed that the liquid products contain in principal monoaromatic compounds like styrene, toluene, ethylbenzene or α-methylstyrene. The FTIR and UV-Vis spectra of products indicated the specific vibration bands or transitions between electronic energy levels of the functional groups of the constituent compounds.

You have full access to the following eBook

Info:

Periodical:

Pages:

103-114

Citation:

Online since:

June 2013

Export:

[1] M. Blazsó, Composition of Liquid Fuels Derived from the Pyrolysis of Plastics, in: J. Scheirs, W. Kamisky (Eds. ), Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons Ltd, Chichester, 2006, p.315–344.

DOI: 10.1002/0470021543.ch12

Google Scholar

[2] M. Bajus, E. Hájeková, Thermal cracking of the model seven components mixed plastics into oils/waxes, Petroleum & Coal 52(3) (2010) 164-172.

Google Scholar

[3] Zs. Czégény, E. Jakab, M. Blazsó, T. Bhaskar, Y. Sakata, Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds, J. Anal. Appl. Pyrol. 96 (2012).

DOI: 10.1016/j.jaap.2012.03.006

Google Scholar

[4] A. López, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, Dechlorination of fuels in pyrolysis of PVC containing plastic wastes, Fuel Process. Technol. 92 (2011) 253–260.

DOI: 10.1016/j.fuproc.2010.05.008

Google Scholar

[5] A. López, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, Pyrolysis of municipal plastic wastes: Influence of raw material composition, Waste Management 30 (2010) 620–627.

DOI: 10.1016/j.wasman.2009.10.014

Google Scholar

[6] J. Aguado, D. P. Serrano, J. M. Escola, Fuels from Waste Plastics by Thermal and Catalytic Processes: A Review, Ind. Eng. Chem. Res. 47 (2008) 7982–7992.

DOI: 10.1021/ie800393w

Google Scholar

[7] W. Kaminsky, I.J. Nñnez, Catalytical and thermal pyrolysis of polyolefins, J. Anal. Appl. Pyrol. 79 (2007) 368–374.

Google Scholar

[8] I. de Marco, B.M. Caballero, A. López, M.F. Laresgoiti, A. Torres, M.J. Chomon, Pyrolysis of the rejects of a waste packaging separation and classification plant, J. Anal. Appl. Pyrol. 85 (2009) 384–391.

DOI: 10.1016/j.jaap.2008.09.002

Google Scholar

[9] J. Aguado, D.P. Serrano, G. San Miguel, J.M. Escola, J.M. Rodríguez, Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins, J. Anal. Appl. Pyrol. 78 (2007) 153–161.

DOI: 10.1016/j.jaap.2006.06.004

Google Scholar

[10] A. Marcilla, A. Gómez-Siurana, D. Berenguer, Study of the influence of the characteristics of different acid solids in the catalytic pyrolysis of different polymers, App. Catal. A: General 301 (2006) 222–231.

DOI: 10.1016/j.apcata.2005.12.018

Google Scholar

[11] S. Chaianansutcharit, R. Katsutath, A. Chaisuwan, T. Bhaskar, A. Nigo, A. Muto, Y. Sakata, Catalytic degradation of polyolefins over hexagonal mesoporous silica: Effect of aluminum addition, J. Anal. Appl. Pyrol. 80 (2007) 360–368.

DOI: 10.1016/j.jaap.2007.04.009

Google Scholar

[12] M. Olazar, G. López, M. Amutio, G. Elordi, R. Aguado, J. Bilbao, Influence of FCC catalyst steaming on HDPE pyrolysis product distribution, J. Anal. Appl. Pyrol. 85 (2009) 359–365.

DOI: 10.1016/j.jaap.2008.10.016

Google Scholar

[13] J. Aguado, D.P. Serrano, J.M. Escola, A. Peral, Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties, J. Anal. Appl. Pyrol. 85 (2009) 352–358.

DOI: 10.1016/j.jaap.2008.10.009

Google Scholar

[14] A. López, I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, A. Torres, Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions, Waste Management 31 (2011) 1973–(1983).

DOI: 10.1016/j.wasman.2011.05.021

Google Scholar

[15] A. López, I. de Marco, B.M. Caballero, M.F. Laresgoiti , A. Adrados, A. Aranzabal, Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud, Appl. Catal. B 104 (2011) 211–219.

DOI: 10.1016/j.apcatb.2011.03.030

Google Scholar

[16] Q. Zhou, W. Lan, A. Du, Y. Wang, J. Yang, Y. Wu, K. Tang, X. Wang, Lanthania promoted MgO: Simultaneous highly efficient catalytic degradation and dehydrochlorination of polypropylene/polyvinyl chloride, Appl. Catal. B, 80 (2008) 141–146.

DOI: 10.1016/j.apcatb.2007.11.018

Google Scholar

[17] M.N. Siddiqui, H.H. Redhwi, Pyrolysis of mixed plastics for the recovery of useful products, Fuel Process. Technol. 90 (2009) 545–552.

DOI: 10.1016/j.fuproc.2009.01.003

Google Scholar

[18] Y. S. González, C. Costa, M.C. Márquez, P. Ramos, Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon, J. Hazard. Mater. 187 (2011) 101–112.

DOI: 10.1016/j.jhazmat.2010.12.121

Google Scholar

[19] K.H. Cho, B.S. Jang, K.H. Kim, D.W. Park, Performance of pyrophyllite and halloysite clays in the catalytic degradation of polystyrene, React. Kinet. Catal. Lett. 88(1) (2006) 43−50.

DOI: 10.1007/s11144-006-0108-1

Google Scholar

[20] K.H. Cho, D. R Cho, K.H. Kim, D.W. Park, Catalytic degradation of polystyrene using albite and montmorillonite, Korean J. Chem. Eng. 24(2) (2007) 223-225.

DOI: 10.1007/s11814-007-5048-6

Google Scholar

[21] S. Jin, K. Cui, H. Guan, M. Yang, L. Liu, C. Lan, Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics, App. Clay Sci. 56 (2012) 1–6.

DOI: 10.1016/j.clay.2011.11.012

Google Scholar

[22] G. Manos, Catalytic Degradation of Plastic Waste to Fuel over Microporous Materials, in J. Scheirs, W. Kamisky (Eds. ), Feedstock Recycling and Pyrolysis of Waste Plastics, John Wiley & Sons Ltd, Chichester, 2006, pp.193-208.

DOI: 10.1002/0470021543.ch7

Google Scholar

[23] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure & Appl. Chem. 57(4) (1985) 603-619, http: /pac. iupac. org/publications/pac/pdf/1985/pdf/5704x0603. pdf.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[24] W. Mozgawa, The relation between structure and vibrational spectra of natural zeolites, J. Molec. Struct. 596 (2001)129-137.

DOI: 10.1016/s0022-2860(01)00741-4

Google Scholar

[25] Th. Perraki, A. Orfanoudaki, Mineralogical study of zeolites from Pentalofos area, Thrace, Greece, Appl. Clay Sci. 25 (2004) 9-16.

DOI: 10.1016/s0169-1317(03)00156-x

Google Scholar

[26] H. Zaitan, D. Bianchi, O. Achak, T. Chafik, A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina, J. Hazard. Mater. 153 (2008) 852-859.

DOI: 10.1016/j.jhazmat.2007.09.070

Google Scholar

[27] O. Korkuna, R. Leboda, J. Skubiszewska-Zięba, T. Vrublevśka, V.M. Guńko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite Micropor. Mesopor. Mater. 87 (2006) 243-254.

DOI: 10.1016/j.micromeso.2005.08.002

Google Scholar

[28] B.C. Smith, Infrared spectral interpretation. A systematic approach, CRC Press, Boca Raton, USA, (1999).

Google Scholar

[29] D.H. Williams, I. Fleming, Spectroscopic methods in organic chemistry. Fifth Editions, McGraw-Hill Publishing Company, Berkshire, England, (1995).

Google Scholar