Optimization of Process Parameters for Surface Roughness in Ultrasonic Machining of Polycarbonate Bullet Proof Glass and Acrylic Heat Resistant Glass by Taguchi and Grey Relational Analysis Approach

Article Preview

Abstract:

Polycarbonate bullet proof glass and acrylic heat resistant glass are used as the functional material in many application. In this research paper, Taguchi modal is utilized for the ultrasonic machining of these material. Surface roughness is significant output parameter, because it define accuracy of the process. Taguchi modal suggest that 40% concentration, mixture of Alumina, Silicon carbide and Boron carbide abrasive in 1:1:1, 600 abrasive grit size and 1.5% HF acid gives best results in polycarbonate bullet proof glass material and for acrylic heat resistant glass, mixture of Silicon carbide and Boron Carbide abrasive in 1:1, 600 abrasive grit size and 1% HF acid gives the best results. More significant parameters contribution in surface roughness are concentration of slurry, grit size of abrasive and HF acid. Optimum parameters improved the surface roughness by 23% and 24% in polycarbonate bullet proof glass and acrylic heat resistant glass respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-44

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] Jain, N.K.; Jain, V.K. Modeling of material removal in mechanical type of advanced machining processes- a state of the art review. International Journal of Machine Tools and Manufacture 2001; 41: 1573-1635. http: /dx. doi. org/10. 1016/S0890-6955(01)00010-4.

DOI: 10.1016/s0890-6955(01)00010-4

Google Scholar

[2] Jain, V.K. Advanced Machining Processes; Allied publishers private limited: New Delhi, India, (2013).

Google Scholar

[3] Kumar, J. Ultrasonic machining- a comprehensive review. Machining Science and Technology 2013; 17(3): 325-379. http: /dx. doi. org/10. 1080/10910344. 2013. 806093.

DOI: 10.1080/10910344.2013.806093

Google Scholar

[4] Azarhoushang, B.; Akbari, J. Ultrasonic assisted drilling of Inconel 738-LC. International Journal of Machine Tools and Manufacture 2007; 47: 1027-1033. http: /dx. doi. org/10. 1016/j. ijmachtools. 2006. 10. 007.

DOI: 10.1016/j.ijmachtools.2006.10.007

Google Scholar

[5] Dvivedi, A.; Kumar, P. Surface quality evaluation in ultrasonic drilling through the taguchi technique. International Journal of Advanced Manufacturing Technology 2007; 34(1–2): 131-140. DOI: 10. 1007/s00170-006-0586-3.

DOI: 10.1007/s00170-006-0586-3

Google Scholar

[6] Gauri, S.K.; Chakravorty, R.; Chakraborty, S. Optimization of correlated multiple responses of ultrasonic machining (USM) process. International Journal of Advanced Manufacturing Technology 2011; 53: 1115-1127. DOI: 10. 1007/s00170-010-2905-y.

DOI: 10.1007/s00170-010-2905-y

Google Scholar

[7] Gilmore, R. Ultrasonic machining- a case study. Journal of Materials Processing Technology 1991; 28(1–2): 139-148. http: /dx. doi. org/10. 1016/0924-0136(91)90213-X.

DOI: 10.1016/0924-0136(91)90213-x

Google Scholar

[8] Ghahramani, B.; Wang, Z.Y. Precision ultrasonic machining process: A case study of stress analysis of ceramic (Al2O3). International Journal of Machine Tools and Manufacture 2001; 41(8): 1189-1208. http: /dx. doi. org/10. 1016/S0890-6955(01)00011-6.

DOI: 10.1016/s0890-6955(01)00011-6

Google Scholar

[9] Goetze, D. Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in ketos tool steel. Journal of Acoustical Society of America 1956; 28(6): 1033-1045. doi: http: /dx. doi. org/10. 1121/1. 1908545.

DOI: 10.1121/1.1908545

Google Scholar

[10] Kennedy, D.C.; Grieve R.J. Ultrasonic machining- a review. The Production Engineer 1975; 54(9): 481-486. DOI: 10. 1049/tpe: 19750245.

DOI: 10.1049/tpe.1975.0245

Google Scholar

[11] Rao, R.V.; Pawar, P.J.; Davim, J.P. Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Materials and Manufacturing Processes 2010; 25(10): 1120-1130. http: /dx. doi. org/10. 1080/10426914. 2010. 489788.

DOI: 10.1080/10426914.2010.489788

Google Scholar

[12] Nair, E.V.; Ghosh, A. A fundamental approach to the study of mechanics of ultrasonic machining. International Journal of Production Research 1985; 23: 731-753. http: /dx. doi. org/10. 1080/00207548508904741.

DOI: 10.1080/00207548508904741

Google Scholar

[13] Sahay, C.; Ghosh, S.; Kammila, H.K. Analysis of ultrasonic machining using monte carlo simulation. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver: USA, 2011. doi: 10. 1115/IMECE2011-63240.

DOI: 10.1115/imece2011-63240

Google Scholar

[14] Thoe, T.B.; Aspinwall, D.K. Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology 1999; 92–93: 323-328. http: /dx. doi. org/10. 1016/S0924-0136(99)00117-X.

DOI: 10.1016/s0924-0136(99)00117-x

Google Scholar

[15] Wiercigroch, M.; Neilson, R.D.; Player, M.A. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Physics Letters 1999; 259: 91-96. http: /dx. doi. org/10. 1016/S0375-9601(99)00416-8.

DOI: 10.1016/s0375-9601(99)00416-8

Google Scholar

[16] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture 1998; 38(4): 239-255. http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.

DOI: 10.1016/s0890-6955(97)00036-9

Google Scholar

[17] Guzzo, P.L.; Raslan, A.A.; DeMello, J.D.B. ) Ultrasonic abrasion of quartz crystals. Wear, 2003; 255: 67-77. http: /dx. doi. org/10. 1016/S0043-1648(03)00094-2.

DOI: 10.1016/s0043-1648(03)00094-2

Google Scholar

[18] Komaraiah, M; Narasimha Reddy,P. N, A study on the influence of work-piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture. 1993; 33 (3): 495–505. http: /dx. doi. org/10. 1016/0890-6955(93)90055-Y.

DOI: 10.1016/0890-6955(93)90055-y

Google Scholar

[19] Haslehurst, M. Manufacturing Technology, 3rd edition, Viva Book, New Delhi, 1981, p.270–271.

Google Scholar

[20] Weilong, C; Zhijian. P, Process of Ultrasonic Machining, Handbook of manufacturing Engineering and Technology, London, (2013).

Google Scholar

[21] Choi, J.P.; Jeon, B.H.; Kim, B.H. Chemical-assisted ultrasonic machining of glass. Journal of Materials Processing Technology, 2007; 191: 153-156. http: /dx. doi. org/10. 1016/j. jmatprotec. 2007. 03. 017.

DOI: 10.1016/j.jmatprotec.2007.03.017

Google Scholar

[22] Morteza, A. S; Maohammad, N. R, Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM, Journal of Modern processes in manufacturing and production, 2014; 3 (2): 59-74.

Google Scholar

[23] Vinod, Y; Aniruddha, D. Design of horn for rotary ultrasonic machining using the finite element method, International journal of advanced manufacturing technology, 2008; 39 (1): 9-20 DOI: 10. 1007/s00170-007-1193-7.

DOI: 10.1007/s00170-007-1193-7

Google Scholar

[24] H. Hong, T.Y. Hung, Advanced analysis of Nontraditional machining, Springer, (1956); 325-339, ISBN 978-1-4614-4054-3. DOI: 10. 1007/978-1-4614-4054-3.

Google Scholar

[25] Soundararajan, V; Radhakrishnan, V. An experimental investigation on the basic mechanisms involved in ultrasonic machining, International Journal of Machine Tool Design and Research, 1986; 26 (3): 307–321. http: /dx. doi. org/10. 1016/0020-7357(86)90008-9.

DOI: 10.1016/0020-7357(86)90008-9

Google Scholar

[26] Weller, E.J. Non-traditional Machining Processes, 2nd edition, American Society of tool and Manufacturing Engineers, 1984; 15–71.

Google Scholar

[27] Guzzo, P.L.; Shinohara, A.H.; Raslan, A.A. A comparative study on ultrasonic machining of hard and brittle materials, Journal of the Brazilian Society of Mechanical Science and Engineering, 2004; 26 (1): 56–61, ISSN 1806-3691. doi. org/10. 1590/S1678-58782004000100010.

DOI: 10.1590/s1678-58782004000100010

Google Scholar

[28] M.A. Moreland, Ultrasonic Machining and Finishing, ASM Handbook, Ceramics and Glasses, 1989: 16: 359–362, ISBN 978-0-87170-022-3.

Google Scholar

[29] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H., Review on ultrasonic machining, International journal of machine tools and manufacture, 1998; 38 (4): 239–255 http: /dx. doi. org/10. 1016/S0890-6955(97)00036-9.

DOI: 10.1016/s0890-6955(97)00036-9

Google Scholar

[30] T.J. Drozda, C. Wick, Non-traditional machining, Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, Vol. 1, Dearborn, MI, 1983, p.1–23, ISBN No. 0872633519.

DOI: 10.1080/10426918908956323

Google Scholar

[31] Neppiras, E.A. Macrosonics in industry 1. Introduction, Ultrasonics, 1972; 10 (1): 9-13. http: /dx. doi. org/10. 1016/0041-624X(72)90207-7.

DOI: 10.1016/0041-624x(72)90207-7

Google Scholar

[32] Seah, K.H.W.; Wong, Y.S.;. Lee, L.C. Design of tool holders for ultra-sonic machining using FEM, Journal of Material Processing Technology. 1993; 37 (1–4): 801–816. http: /dx. doi. org/10. 1016/0924-0136(93)90138-V.

DOI: 10.1016/0924-0136(93)90138-v

Google Scholar

[33] Komaraiah, M.; Manan, M.A.;. Reddy, P. N.; Victor, S. Investigation of surface roughness and accuracy in ultrasonic machining, Precision Engineering, 1988; 10 (2): 59–65. http: /dx. doi. org/10. 1016/0141-6359(88)90001-3.

DOI: 10.1016/0141-6359(88)90001-3

Google Scholar

[34] Neppiras, E.A. Ultrasonic machining and forming, Ultrasonics 1964; 2 (4): 167–173. http: /dx. doi. org/10. 1016/0041-624X(64)90110-6.

DOI: 10.1016/0041-624x(64)90110-6

Google Scholar

[35] Prewo, K.M.; Brennan, J.J.; High Strength silicon carbide fiber-reinforced glass-matrix composites, Journal of material science, 1980; 15 (2): 463-468. DOI: 10. 1007/BF00551699.

DOI: 10.1007/bf02396796

Google Scholar

[36] Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. The effect of operating parameters when ultrasonic contour machining, in: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12), Cork, Ireland, September, 1995; 305–312.

Google Scholar

[37] Adithan, M. Tool wear studies in ultrasonic drilling, Wear, 1974; 29: 81–93. http: /dx. doi. org/10. 1016/0043-1648(74)90136-7.

DOI: 10.1016/0043-1648(74)90136-7

Google Scholar

[38] Kainth, G.S.; Nandy, A.; Singh, K. On the mechanics of material removal in ultrasonic machining, International Journal of Machine Toll Design And Research, 1979; 19 (1): 33–41. http: /dx. doi. org/10. 1016/0020-7357(79)90019-2.

DOI: 10.1016/0020-7357(79)90019-2

Google Scholar

[39] Jain, V.K. Advanced Machining Process, Allied Publisher Pvt. Limited, India, 2002, p.28–56.

Google Scholar

[40] Miller, G.E. Special Theory of Ultrasonic Machining, Journal of applied physics, 1957; 28 (2): 149-156. http: /dx. doi. org/10. 1063/1. 1722698.

Google Scholar

[41] Neppiras, E.A.; Foskett, R.D. Ultrasonic machining, Phillips Technical Review, 18 (11) (1957) 325–368.

Google Scholar

[42] Pandey, P.C.; Shan, H.S. Modern Machining Processes, Tata McGraw-Hill, 1980, p.7–38 [Chapter 2].

Google Scholar

[43] Amin, S.G.; Ahmed, M.H.M.; Youssef, H.A. Computer aided design of acoustic horns for ultrasonic machining using finite element analysis, Journal of material processing technology, 1995; 55: 254-260. http: /dx. doi. org/10. 1016/0924-0136(95)02015-2.

DOI: 10.1016/0924-0136(95)02015-2

Google Scholar

[44] Cook, N.H. Manufacturing Analysis, Addison-Wesley, New York, 1966; 133–138.

Google Scholar

[45] Graff, K.F. Macrosonics in industry. 5. Ultrasonic machining, Ultrasonics, 1975; 13: 103–109. http: /dx. doi. org/10. 1016/0041-624X(75)90060-8.

DOI: 10.1016/0041-624x(75)90060-8

Google Scholar

[46] Kremer, D. The state of the art of ultrasonic machining, Ann. CIRP, 1981; 30 (1): 107–110. http: /dx. doi. org/10. 1016/S0007-8506(07)60905-6.

DOI: 10.1016/s0007-8506(07)60905-6

Google Scholar

[47] Khairy, A.B.E. Assessment of some dynamic parameters for the ultra-sonic machining process, Wear, 1990; 137: 187–198 http: /dx. doi. org/10. 1016/0043-1648(90)90135-W.

DOI: 10.1016/0043-1648(90)90135-w

Google Scholar

[48] Singh, K.; Ahuja, I.P.S. Ultrasonic machining processes- review paper, International Journal for multi-disciplinary Engineering and Business Management, 2014; 2 (3): 57-66.

Google Scholar

[49] Singh, K.; Kumar, V. A Study on the Tool Geometry and Stresses Induced in Tool in Ultrasonic Machining Process Applied for the Tough and Brittle Materials, International Journal for multi-disciplinary Engineering and Business Management, 2014; 2 (3): 67-71.

Google Scholar

[50] Singh, K.; Kumar, V.S. Finite Element Analysis of Ultrasonic Machine Tool, International journal of engineering research and technology, 2014; 3 (7): 1647-1650.

Google Scholar

[51] Singh, K., Ahuja, I.P.S.; Kapoor. J. Study the effect of abrasive and hydrofluoric acid in ultrasonic machining of plain glass material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India, ISBN 978-93-5196-055-3.

Google Scholar

[52] Singh, K., Ahuja, I.P.S. and Kapoor. J. Ultrasonic machining of glass brittle material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India, ISBN 978-93-5196-055-3.

Google Scholar

[53] Singh, K., Ahuja, I.P.S. and Kapoor. J. Comparative study between conventional machining, chemical ultrasonic machining (CUSM) and ultrasonic machining (USM) of plain glass, polycarbonate, acrylic, bullet proof and heat resistant glass, In proceeding, International conference in latest development in materials, manufacturing and quality control, 12th -13th Feb-2016, GZSCCET BTI India , ISSN 978-93-5212-858-7.

DOI: 10.4028/www.scientific.net/aef.24.24

Google Scholar

[54] Adithan, M. Tool wear characteristics in ultrasonic drilling, Tribology International, 1981; 14 (6): 351–356. http: /dx. doi. org/10. 1016/0301-679X(81)90103-1.

DOI: 10.1016/0301-679x(81)90103-1

Google Scholar

[55] Goetze, D. Effect of vibration amplitude, frequency and composition of the abrasive slurry on the rate of ultrasonic machining in Ketos tool steel, Journal of acoustical society of America, 1956; 28 (6): 1033–1037 Doi: http: /dx. doi. org/10. 1121/1. 1908545.

DOI: 10.1121/1.1908545

Google Scholar

[56] Adithan, M. Abrasive wear in ultrasonic drilling, Tribology International, 1983; 16 (5): 253–255. http: /dx. doi. org/10. 1016/0301-679X(83)90083-X.

DOI: 10.1016/0301-679x(83)90083-x

Google Scholar

[57] Adithan, M.; Venkatesh, V.C. Parameter influence on tool wear in ultra-sonic drilling, Tribolology International, 1974; 7 (6): 260–264. http: /dx. doi. org/10. 1016/0041-2678(74)90106-7.

DOI: 10.1016/0041-2678(74)90106-7

Google Scholar

[58] Babitsky, V.I.; Astashev, V.K. Ultrasonic processes and machine, Springer Berlin Heidelberg New York, (2007) ISBN 978-3-540-72060-7.

Google Scholar

[59] Jain, N.K.; Jain, V.K. Modeling of material removal in mechanical type advanced machining processes: a state of art review, International journal of machine tools and manufacture, 2001; 41 (11): 1573-1635 http: /dx. doi. org/10. 1016/S0890-6955(01)00010-4.

DOI: 10.1016/s0890-6955(01)00010-4

Google Scholar

[60] Jain, V.; Sharma, A.K.; Kumar, P. Investigations on tool wear in micro Ultrasonic machining, Applied Mechanics and Material, Tranc Tech Publication Switzerland, 2012; 110-116: 1561-1566. DOI: 10. 4028/www. scientific. net/AMM. 110-116. 1561.

DOI: 10.4028/www.scientific.net/amm.110-116.1561

Google Scholar

[61] I. Kaczmarek, Impact Grinding (Ultrasonic machining)—Book Chapter: 21 Principles of Machining by Cutting Abrasion and Erosion, Peter Peregrinus Ltd, Stevenage, 1976; 448–462, ISBN 0901223662.

Google Scholar

[62] Dharmadhikari, S.W.; Sharma, C.S. Optimization of abrasive life in Ultrasonic Machining, Journal of Manufacturing Science and Engineering, 1985; 107 (4): 361-364. doi: 10. 1115/1. 3186010.

DOI: 10.1115/1.3186010

Google Scholar

[63] Bekrenev, N.V.; Muldasheve, G.K.; Petrovskii, A.P.; Tsvetkova, O.A. Influence of the thermal effect on the cutting forces in the ultrasonic machining of high strength material, Russian Engineering Research, ISSN 1068-798X, 2015; 35 (10): pp.758-759.

DOI: 10.3103/s1068798x15100056

Google Scholar

[64] Chang, S.; Bone, G.M. Burr size reduction in drilling by ultrasonic assistance. Robotics and Computer-Integrated Manufacturing, 2005, 120, 442-450.

DOI: 10.1016/j.rcim.2004.11.005

Google Scholar

[65] Fan, W.H.; Chao, C.L.; Chou, W.C.; Chen, T. T; Chao, C.W. Study on the Surface Integrity of Micro-Ultrasonic Machined Glass-Ceramic Material, Key Engineering Materials, 2009; 407-408: 731-734. DOI: 10. 4028/www. scientific. net/KEM. 407-408. 731.

DOI: 10.4028/www.scientific.net/kem.407-408.731

Google Scholar

[66] Kumar, J.; Khamba, J.S. An Investigation into the effect of work material properties, tool geometry and abrasive properties on performance indices of ultrasonic machining. International Journal of Machining and Machinability of Materials, 2009; 5(2/3): 347-365. http: /dx. doi. org/10. 1504/IJMMM. 2009. 023399.

DOI: 10.1504/ijmmm.2009.023399

Google Scholar

[67] Schorderet,A. Deghilage, E. Agbeviade, K. tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass, Procedia CIRP, 2013; 565-570. http: /dx. doi. org/10. 1016/j. procir. 2013. 03. 072.

DOI: 10.1016/j.procir.2013.03.072

Google Scholar

[68] Elliot, S.R.  Physics of Amorphous Materials. Longman group ltd, London, New York, 1984; 20 (9): ISBN 0-582-44636-8.

DOI: 10.1002/crat.2170200922

Google Scholar

[69] Scholze, H. Glass – Nature, Structure, and Properties. Springer, Verlag, New York, (1991) ISBN 978-1-4613-9069-5. DOI: 10. 1007/978-1-4612-9069-5.

Google Scholar

[70] Phillips, J.C. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, Journal of Non-Crystalline Solids. 1979; 34 (2): 153-181.

DOI: 10.1016/0022-3093(79)90033-4

Google Scholar

[71] Folmer , J. C. W., Franzen, S. Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory, Journal of Chemical Education. 2003; 80 (7): 813-818. DOI: 10. 1021/ed080p813.

DOI: 10.1021/ed080p813

Google Scholar

[72] Phillips D. C, Sambell R.A. J, Bowen D. H, The mechanical properties of carbon fiber reinforced pyrex glass, Journal of Material Science, 1972; 7 (12): 1454-1464. DOI: 10. 1007/BF00574937.

DOI: 10.1007/bf00574937

Google Scholar

[73] Dr Karl's Homework: Glass Flows, Australia: ABC. 26 January 2000. Retrieved 24 October (2009).

Google Scholar

[74] Dutra, Z. E. Do Cathedral Glasses Flow? American Journal of Physics, 66 (5) (1998), p.392–396.

Google Scholar

[75] Vogel, W.; Kreidl, N.; Chemistry of Glass, Wiley, 1985. ISBN 978-0-916094-73-7.

Google Scholar

[76] Stookey, S.D.; Beall, G.H. Explorations in Glass: An Autobiography, Wiley, 2000, ISBN 978-1-57498-124-7.

Google Scholar

[77] Noel C. Stokes, The Glass and Glazing Handbook, Standards Association of Australia, (1998) ISBN 073372468X.

Google Scholar

[78] L.D. Rozenberg (Ed. ), Physical Principles of Ultrasonic Technology, vols. 1 and 2, Plenum Press, New York, 1973, ISBN 978-1-4684-8217-1.

Google Scholar

[79] Ultrasonic machining of glass at the N.P.T.L., Machinery, May 1964, p.1172–1176.

Google Scholar

[80] William. S.; Jayad. H. Foundation of material science and engineering, 4tg Ed. McGraw-Hill. Pp. 509. ISBN 0-07-295358-6.

Google Scholar

[81] Harper, C.A.; Petrie, E.M. Plastic materials and processes: A concise encyclopaedia, John Wiley and Sons, p.9, ISBN 978-0471-45920-0.

Google Scholar

[82] V.C. Venkatesh, Machining of glass by impact processes, Journal of Mechanical Working Technology, 1983, 8, 247–260 http: /dx. doi. org/10. 1016/0378-3804(83)90042-6.

DOI: 10.1016/0378-3804(83)90042-6

Google Scholar

[83] D.E. Clark, C.G. Pantano, Jr., L.L. Hench, Corrosion of Glass, Books for Industry, (1979).

Google Scholar

[84] A. Paul, Chemistry of Glasses, 2nd Edition, Chapman and Hall, London, New York, 1990, ISBN 0-412-27820-0.

Google Scholar

[85] Guzzo, P.L.; Raslan, A.A.; DeMello, J.D.B. ) Ultrasonic abrasion of quartz crystals. Wear, 2003; 255: 67-77. http: /dx. doi. org/10. 1016/S0043-1648(03)00094-2.

DOI: 10.1016/s0043-1648(03)00094-2

Google Scholar

[86] Kuo, K.L. Experimental investigation of brittle material milling using rotary ultrasonic machining. Proceedings of the 35th International MATADOR Conference, Springer: London, 2007, 195-198. DOI: 10. 1007/978-1-84628-988-0_43.

DOI: 10.1007/978-1-84628-988-0_43

Google Scholar

[87] Hasani, H., Tabatabaei., S.A. and Amiri, G. Grey relational analysis to determine the optimum process parameters for open end sprnning yarns. Journal of engineering fibers and fabrics 2012; 7 (2): 81-86.

DOI: 10.1177/155892501200700212

Google Scholar

[88] Hasiao, Y.F., Tarng, Y.S. and Huang, W.J. Optimization of plasma are welding parameters by using the Taguchi method with the Grey relational analysis. Materials and manufacturing processes 2008, 23, 51-58. doi. org/10. 1080/10426910701524527.

DOI: 10.1080/10426910701524527

Google Scholar

[89] Lin, C.L., Lin, J.L. and Ko, T.C. Optimisation of EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. International journal of advanced manufacturing technology 2002; 19: 271-277. doi: 10. 1007/s001700200034.

DOI: 10.1007/s001700200034

Google Scholar

[90] You, M.L., Shu, C.M., Chen, W.T. and Shyu, M.L. Analysis of cardinal grey relational grade and grey entropy on achievement of air pollution reduction by evaluating air quality trend in Japan. Journal of cleaner production 2017; 142 (4): 3883-3889. doi. org/10. 1016/j. jclepro. 2016. 10. 072.

DOI: 10.1016/j.jclepro.2016.10.072

Google Scholar

[91] Patil, P.J. and Patil, C.R. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade. Perspective in Science 2016; 8: 367-369. doi. org/10. 1016/j. pisc. 2016. 04. 077.

DOI: 10.1016/j.pisc.2016.04.077

Google Scholar

[92] Ahmad, N., Kamal, S., Raza, Z.A. and Hussain, T. Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Applied surface science 2016; 367: 370-381. doi. org/10. 1016/j. apsusc. 2016. 01. 165.

DOI: 10.1016/j.apsusc.2016.01.165

Google Scholar

[93] Lin, Y.H., Lee, P.C. and Chang, T.P. Practical expert diagnosis modal based on the grey relational analysis technique. Expert system with applications 2009; 36: 1523-1528. doi. org/10. 1016/j. eswa. 2007. 11. 046.

DOI: 10.1016/j.eswa.2007.11.046

Google Scholar

[94] Lin, H.L. The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of intelligent manufacturing 2012; 23(5): 1671-1680. doi: 10. 1007/s10845-010-0468-2.

DOI: 10.1007/s10845-010-0468-2

Google Scholar

[95] Manivannan, S., Prasanna, S. and Aramugam, R. Multi-objective optimization of flat plate heat sink using Taguchi based grey relational analysis. International journal of advanced manufacturing technology 2011; 52: 739-749. DOI: 10. 1007/s00170-010-2754-8.

DOI: 10.1007/s00170-010-2754-8

Google Scholar

[96] Meena, V.K. and Azad, M.S. Grey relational analysis of micro EDM machining of Ti-6Al-4V alloy. Material and manufacturing processes 2012; 27: 973-977. doi. org/10. 1080/10426914. 2011. 610080.

DOI: 10.1080/10426914.2011.610080

Google Scholar

[97] Singh, P.N., Raghukandan, K. and Pai, B.C. Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCp composites. Journal of material processing technology 2004; 155-156: 1658-1661. doi. org/10. 1016/j. jmatprotec. 2004. 04. 322.

DOI: 10.1016/j.jmatprotec.2004.04.322

Google Scholar

[98] Sreenivasulu, R. and Srinivasarao,C., 2012. Application of Grey relational analysis for surface roughness and roundness error in drilling of AL 6061 alloy. International journal of lean thinking 2012; 3(2): 68-78.

Google Scholar