Skip to main content
Log in

Feasibility Study of the Fluence-to-Dose Network (FDNet) for Patient-Specific IMRT Quality Assurance

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The aim of this study is to predict the delivered dose distribution [Ddelivered(x, y)] with the use of a fluence-to-dose network (FDNet) to conduct patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (pQA). The architecture of the FDNet was based on a convolutional neural network. Forty-four IMRT clinical cases of planned dose distributions for pQA [Dplanned(x, y)] and dynamic multileaf collimator (MLC) log files (Dynalog files) were collected. Using the Dynalog files, the expected fluence stack [Fexpected(x, y, t)] and the actual fluence stack [Factual(x, y, t)] were created from the expected and the actual machine parameters, respectively. The actual fluence stack, which was reconstructed from the partial information of the Dynalog file, corresponded to the control points of the Digital Imaging and Communications in Medicine radiation treatment plan and was denoted as [Factual(x, y, tpartial)]. The entire dataset was split into 11 subsets for the k-fold averaging cross-validation (k = 11). Ten (out of the 11) folds were used to train 10 candidate optimal FDNet models, and an ultimate FDNet was determined by averaging the parameters of the optimal models. The pQA was performed using the test data of the remaining fold with the ultimate FDNet. The dose distributions predicted using Factual(x, y, t) [Dpredicted(Factual(x, y, t))] and Factual(x, y, tpartial) [Dpredicted(Factual(x, y, tpartial))] were acquired. To evaluate the predicted pQA results, we conducted dosimetry using EBT3 films and an ion-chamber array detector (MatriXX). These dose distributions were compared with the Dplanned(x, y) by using a gamma analysis. The average gamma passing rates were determined based on the 3%/3 mm gamma criterion and were, respectively, equal to 98.49%, 97.21%, 97.23%, and 98.03%, for the Dpredicted(Factual(x, y, t)), Dpredicted(Factual(x, y, tpartial)), EBT3 film, and MatriXX. According to this study, the feasibility of the dose prediction method using the FDNet with complete Dynalog information was verified for the pQA. The respective differences of the average gamma passing rates for the Dpredicted(Factual(x, y, t)), and Dpredicted(Factual(x, y, tpartial)) were equal, respectively, to 1.28% and 2.88% according to the 3%/3 mm and the 2%/2 mm gamma criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Hartford et al., Int. J. Radiat. Oncol. Biol. Phys. 73, 9 (2009).

    Article  Google Scholar 

  2. J. M. Moran et al., Med. Phys. 38, 5067 (2011).

    Article  Google Scholar 

  3. X. Y. Cedric, C. J. Amies and M. Svatos, Med. Phys. 35, 5233 (2008).

    Article  Google Scholar 

  4. G. A. Ezzell et al., Med. Phys. 30, 2089 (2003).

    Article  Google Scholar 

  5. Intensity Modulated Radiation Therapy Collaborative Working Group, Int. J. Radiat. Oncol. Biol. Phys. 51, 880 (2001).

    Article  Google Scholar 

  6. M. S. Huq et al., Med. Phys. 43, 4209 (2016).

    Article  Google Scholar 

  7. V. Gregoire and T. R. Mackie, Cancer Radiother. 15, 555 (2011).

    Article  Google Scholar 

  8. S. Park et al., J. Korean Phys. Soc. 69, 248 (2016).

    Article  ADS  Google Scholar 

  9. A. M. Gueli et al., Radiat. Meas. 72, 44 (2015).

    Article  Google Scholar 

  10. H. S. Jeong et al., NET 42, 670 (2010).

    Article  Google Scholar 

  11. R. Dreindl, D. Georg and M. Stock, Z. Med. Phys. 24, 153 (2014).

    Article  Google Scholar 

  12. E. Y. Marroquin et al., J. Appl. Clin. Med. Phys. 17, 466 (2016).

    Article  Google Scholar 

  13. V. C. Borca et al., J. Appl. Clin. Med. Phys. 14, 158 (2013).

    Article  Google Scholar 

  14. H. Jung et al., J. Korean Phy. Soc. 65, 1829 (2014).

    Article  ADS  Google Scholar 

  15. Y. Onishi et al., J. Korean Phys. Soc. 67, 89 (2015).

    Article  ADS  Google Scholar 

  16. G. Yan et al., Med. Phys. 37, 108 (2010).

    Article  Google Scholar 

  17. Q. L. Li et al., Chin. J. Cancer 29, 617 (2010).

    Article  Google Scholar 

  18. P. A. Jursinic, Med. Phys. 36, 2165 (2009).

    Article  Google Scholar 

  19. L. D. Wolfsberger et al., J. Appl. Clin. Med. Phys. 11, 241 (2010).

    Article  Google Scholar 

  20. Y. Shimohigashi et al., J. Appl. Clin. Med. Phys. 13, 3856 (2012).

    Article  Google Scholar 

  21. D. Rangaraj et al., Pract. Radiat. Oncol. 3, 80 (2013).

    Article  Google Scholar 

  22. C. E. Agnew, D. M. Irvine and C. K. McGarry, J. Appl. Clin. Med. Phys. 15, 4994 (2014).

    Article  Google Scholar 

  23. M. D. Kumar, N. Thirumavalavan, D. V. Krishna and M. Babaiah, J. Med. Phys. 31, 36 (2006).

    Article  Google Scholar 

  24. Y. Katsuta et al., Phys. Med. 32, 701 (2016).

    Article  Google Scholar 

  25. E. Schreibmann, A. Dhabaan, E. Elder and T. Fox, Med. Phys. 36, 4530 (2009).

    Article  Google Scholar 

  26. D. L. Defoor et al., J. Appl. Clin. Med. Phys. 16, 206 (2015).

    Article  Google Scholar 

  27. J. W. Lee et al., J. Korean Phys. Soc. 55, 1649 (2009).

    Article  Google Scholar 

  28. Y. Jung and J. Hu, J. Nonparam. Stat. 27, 167 (2015).

    Article  Google Scholar 

  29. A. L. McNiven, M. B. Sharpe and T. G. Purdie, Med. Phys. 37, 505 (2010).

    Article  Google Scholar 

  30. Varian User Manual, Dynalog File Viewer Reference Guide (2003).

    Google Scholar 

  31. G. Xu, H. Z. Wu and Y. Q. Shi, in Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (ACM, 2016, Vigo, Spain), p. 103.

    Google Scholar 

  32. A. Krizhevsky, I. Sutskever and G. E. Hinton, in Advances in Neural Information Processing Systems (2012), p. 1097.

    Google Scholar 

  33. K. He, X. Zhang, S. Ren and J. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016, Nevada, USA), p. 770.

    Google Scholar 

  34. S. Ioffe and C. Szegedy, arXiv preprint arXiv:1502.03167 (2015).

    Google Scholar 

  35. M. Rezaei, H. Yang and C. Meinel, in International Conference on Neural Information Processing (Springer, 2017, Guangzhou, China), p. 798.

    Book  Google Scholar 

  36. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

    Google Scholar 

  37. V. Nair and G. E. Hinton, in Proceedings of the 27th International Conference on Machine Learning (ICML- 10) (2010, Haifa, Israel), p. 807.

    Google Scholar 

  38. D. A. Low, W. B. Harms, S. Mutic and J. A. Purdy, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

  39. A. Agnew et al., Phys. Med. Biol. 59, N49 (2014).

    Article  Google Scholar 

  40. W. Luo et al., Med. Phys. 33, 2557 (2006).

    Article  Google Scholar 

  41. P. Zygmanski, J. H. Kung, S. B. Jiang and L. Chin, Med. Phys. 30, 2736 (2003).

    Article  Google Scholar 

  42. J. F. Calvo-Ortega et al., J. Appl. Clin. Med. Phys. 15, 4665 (2014).

    Article  Google Scholar 

  43. J. Qian, L. Xing, W. Liu and G. Luxton, Phys. Med. Biol. 56, 4827 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (MSIP) (2017R1C1B2011257 and 2013M2A2A7043507).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Jun Min or Youngyih Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, W., Kim, S.J., Hwang, UJ. et al. Feasibility Study of the Fluence-to-Dose Network (FDNet) for Patient-Specific IMRT Quality Assurance. J. Korean Phys. Soc. 75, 724–734 (2019). https://doi.org/10.3938/jkps.75.724

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.724

Keywords

Navigation