Skip to main content
Log in

Relativistic Treatment of Spin-zero Particles Subjected to the Shifted Tietz-Wei Potential Model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The approximate solutions of the Klein-Gordon equation with the shifted Tietz-Wei potential function are thoroughly studied for Klein-Gordon equation with both 2V and V potentials by using a suitable approximation scheme for the centrifugal term in the framework of the supersymmetric approach. The non-relativistic limits in both cases are obtained, and the numerical results are computed. We have equally investigated the Fisher information on the shifted Tietz-Wei potential function in the case of the non-relativistic limit of the Klein-Gordon equation with potential V because this is only possible in the non-relativistic regime. The Fisher information is observed to be inversely proportional to both Ch and bh, where Ch is the optimization parameter and bh = β(1 − Ch), with β being the Morse constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zarrinkamar, A. A. Rajabi and H. Hassanabadi, Phys. Scr. 83, 015009 (2011).

    Article  ADS  Google Scholar 

  2. H. Hasanabadi, E. Maghsoodi and S. Zarrinkamar, Eur. Phys. J. Plus 127, 31 (2012).

    Article  Google Scholar 

  3. O. Bayrak, A. Soylu and I. Boztosun, J. Math. Phys. 51, 112301 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. R. Setare and S. Haidari, Phys. Scr. 81, 065221 (2010).

    ADS  Google Scholar 

  5. M. R. Setare and S. Haidari, Int. J. Theor. Phys. 45, 3249 (2009).

    Article  Google Scholar 

  6. W. C. Qiang and S. H. Dong, Phys. Lett. A 372, 4789 (2008).

    Article  ADS  Google Scholar 

  7. S. Zarrinkamar, A. A. Rajabi and H. Hassanabadi, Ann. Phys. 325, 2522 (2010).

    Article  ADS  Google Scholar 

  8. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, J. Math. Phys. 53, 022104 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. N. Ikot, H. P. Obong, I. O. Owate, M. C. Onyeaju and H. Hassanabadi, Adv. High Energy Phys.2015.doi:10.1155/2015/632603.

  10. A. N. Ikot, H. Hassanabadi, N. Salehl, H. P. Obong and M. C. Onyeaju, Indian. J. Phys. 89, 1221 (2015).

    Article  ADS  Google Scholar 

  11. C. A. Onate, M. C. Onyeaju, A. N. Ikot and J. O. Ojonubah, Chin. J. Phys. doi:10.1016/j.cjph.2016.08.007.

  12. S. M. Ikhdair, Int. J. Mod. Phys. C 20, 1563 (2009).

    Article  ADS  Google Scholar 

  13. T. T. Ibrahim, K. J. Oyewumi and S. M. Wyngaardt, Eur. Phys. J. Plus 127, 100 (2012).

    Article  Google Scholar 

  14. S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. C 19, 1425 (2008).

    Article  ADS  Google Scholar 

  15. B. J. Falaye, F. A. Serrano and S. H. Dong, Phys. Lett. A 380, 271 (2016).

    Article  ADS  Google Scholar 

  16. J. S. Dehesa, A. M. Finkelshtotein and J. S. Ruiz, J. Compt. Appl. Math. 133, 23 (2001).

    Article  ADS  Google Scholar 

  17. L. Erwin, Y. Deane and G. Zhang, Trans. Inform. Theor. 51, 473 (2005).

    Article  Google Scholar 

  18. E. Romera, P. S. Moreno and J. S. Dehesa, J. Math. Phys. Lett. 47, 103504 (2006).

    Article  ADS  Google Scholar 

  19. S. A. Patil and K. D. Sen, Phys. Lett. A 362, 109 (2007).

    Article  ADS  Google Scholar 

  20. J. J. Omiste, R. J. Y˙anez and J. S. Dehesa, J. Math. Chem. 47, 911 (2010).

    Article  MathSciNet  Google Scholar 

  21. P. A. Bouvrie, J. C. Angulo and J. S. Dehesa, Phys. A 390, 2215 (2011).

    Article  MathSciNet  Google Scholar 

  22. A. Ghasemi, M. S. Hooshmandasl and M. K. Tavassovly, Phys. Scr. 84, 035007 (2011).

    Article  ADS  Google Scholar 

  23. S. Dong, G. H. Sun, S. H. Dong and J. P. Draayer, Phys. Lett. A 378, 124 (2014).

    Article  ADS  Google Scholar 

  24. G. Ya˜nez Navarro, G. H. Sun, T. Dytrych and K. E. Launey, Ann. Phys. 348, 153 (2014).

    Article  ADS  Google Scholar 

  25. S. A. Najafizade, H. Hassanabadi and S. Zarrinkamar, Chem. Phys. B 25, 040301 (2016).

    Google Scholar 

  26. J. O. A. Idiodi and C. A. Onate, Commun. Theor. Phys. 66, 269 (2016).

    Article  ADS  Google Scholar 

  27. D. X. Macedo and I. Guedes, Phys. A 434, 211 (2015).

    Article  MathSciNet  Google Scholar 

  28. B. J. Falaye, F. A. Serrano and S. H. Dong, Phys. Lett. A 380, 267 (2016).

    Article  ADS  Google Scholar 

  29. C. A. Onate and J. O. A. Idiodi, Commun. Theor. Phys. 66, 275 (2016).

    Article  ADS  Google Scholar 

  30. A. Alhaidari, H. Bahlouli and A. Al-Hassan, Phys. Lett. A 349, 87 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Cooper and B. Freedman, Ann. Phys. 146, 262 (1983).

    Article  ADS  Google Scholar 

  32. A. Comet, A. Bandrank and D. K. Campbell, Phys. Lett. B 150, 159 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Hruska, W. Y. Keung and U. Sukhatme, Phys. Rev. A 55, 3345 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  34. C. A. Onate, K. J. Oyewumi and B. J. Falaye, Few Body Syst. 55, 61 (2014).

    Article  ADS  Google Scholar 

  35. T. Chen, J. Y. Liu and C. S. Jia, Phys. Scr. 79, 055002 (2009).

    Article  ADS  Google Scholar 

  36. C. S. Jia, T. Chen and S. He, Phys. Lett. A 377, 682 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Hassanabadi, E. Maghsoodi and S. Zarrinkamar, Comm. Theor. Phys. 58, 807 (2012).

    Article  ADS  Google Scholar 

  38. S. Zarrinkamar, H. Hassanabadi and A. A. Rajabi, Int. J. Mod. Phys. A 26, 1011 (2011).

    Article  ADS  Google Scholar 

  39. H. Hassanabadi, E. Maghsoodi and S. Zarrinkamar, Ann. der Physik 525, 944 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  40. C. A. Onate and J. O. Ojonubah, J. Theor. Appl. Phys. 10, 21 (2016).

    Article  ADS  Google Scholar 

  41. C. Tezcan and R. Sever, Int. J. Theor. Phys. 48, 337 (2009).

    Article  Google Scholar 

  42. C. Shannon and W. Weaver, A Mathematical Theory of Communication (The University of IIIinoisPress, Urbana, IIIinois).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ikot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onate, C.A., Ikot, A.N., Onyeaju, M.C. et al. Relativistic Treatment of Spin-zero Particles Subjected to the Shifted Tietz-Wei Potential Model. J. Korean Phys. Soc. 73, 531–537 (2018). https://doi.org/10.3938/jkps.73.531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.531

Keywords

Navigation