Skip to main content
Log in

Atomic-level Sharpening of a Carbon Nanotube Tip for High-resolution Scanning Tunneling Microscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using a multi-walled carbon nanotube (MW-CNT) tip, we have observed the honeycomb lattice of highly oriented pyrolytic graphite (HOPG) via scanning tunneling microscopy (STM). This observation was made after acquiring typical STM images of HOPG, i.e., showing the triangular lattice. We consider this change is due to atomic reconfiguration at the apex of the MW-CNT tip induced by continuous STM scanning. The atomic-level sharpening of CNT tips will be useful to image samples with small lattice constants or to obtain orbital information from samples with an orbital ordering such as manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wongwiriyapan et al., Jpn. J. Appl. Phys. 45, 1880 (2006).

    Article  ADS  Google Scholar 

  2. H. Konishi et al., Rev. Sci. Instrum. 78, 013703 (2007).

    Article  ADS  Google Scholar 

  3. H. W. Lee, S. H. Kim, Y. K. Kwak and C. S. Han, Rev. Sci. Instrum. 76, 046108, (2005).

    Article  ADS  Google Scholar 

  4. Z. Deng et al., Appl. Phys. Lett. 85, 6263 (2004).

    Article  ADS  Google Scholar 

  5. T. Ikuno et al., Jpn. J. Appl. Phys. 43, L644 (2004).

    Article  ADS  Google Scholar 

  6. D. Tománek et al., Phys. Rev. B 35, 7790 (1987).

    Article  ADS  Google Scholar 

  7. A. G. Güell, S. Tan, P. R. Unwin and G. Zhang, Electrochemistry of Carbon Electrodes (Wiley, New York, 2016), p. 31.

    Book  Google Scholar 

  8. Y. Shingaya, T. Nakayama and M. Aono, Physica B 323, 153 (2002).

    Article  ADS  Google Scholar 

  9. P. N. Minh, N. V. Chuc, P. N. Hong, N. T. T. Tam and P. H. Khoi, J. Korean Phys. Soc. 53, 2725 (2008).

    Article  ADS  Google Scholar 

  10. P. Moriarty and G. Hughes, Appl. Phys. Lett. 60, 2338 (1992).

    Article  ADS  Google Scholar 

  11. P. J. Ouseph, T. Poothackanal and G. Mathew, Phys. Lett. A 205, 65 (1995).

    Article  ADS  Google Scholar 

  12. Y. Wang, Y. Ye and K. Wu, Surface Science 600, 729 (2006).

    Article  ADS  Google Scholar 

  13. J. I. Paredes, A. M. Alonso and J. M. D. Tascon, Carbon 39, 476 (2001).

    Article  Google Scholar 

  14. Q. Lu and B. Bhattacharya, Nanotechnology 16, 555 (2005).

    Article  ADS  Google Scholar 

  15. V. Caciuc, H. Hölscher, S. Blügel and H. Fuchs, Phys. Rev. Lett. 96, 016101 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suenne Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, S., Huang, J. et al. Atomic-level Sharpening of a Carbon Nanotube Tip for High-resolution Scanning Tunneling Microscopy. J. Korean Phys. Soc. 73, 396–398 (2018). https://doi.org/10.3938/jkps.73.396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.396

Keywords

Navigation