Skip to main content
Log in

High energy electron beams from a laser wakefield acceleration with a long gas jet

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 21 October 2017

This article has been updated

Abstract

A long gas jet was used as a gas target for laser wake field acceleration to increase the energy and quality of the electron beam. When the plasma density was 7 × 1018 cm−3, quasi monoenergetic electron beams with a maximum energy of 152 MeV, a beam divergence 3 mrad, and a pointing stability 4 mrad were generated with a 5 mm long gas jet. The maximum energy was close to the theoretical limit predicted from the bubble model. This means that the length of the plasma was sufficiently long to accelerate the electron to the dephasing length after the electrons were self-injected by self-focusing. As the plasma density increased, the dephasing length decreased and the electron energy decreased. The continuous injection with higher density plasmas generated highly diverging beams. As the laser power increased, a number of electron beams with different propagation directions were generated. As shown by the measured shadowgram, the laser was divided into several filaments and each filament accelerated electron beam having different directions. The electron beam generated at this time decreased as the laser energy decreased due the division of the laser into different directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 October 2017

    One affiliation of Shin-Yeong Lee was omitted. It should be added as “Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, Daejeon 34057, Korea”.

References

  1. T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  2. E. Esarey, C. B. Schroeder and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

  3. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, H. Kiriyama, J. K. Koga, H. Kotaki, M. Mori and M. Kando, J. Plasma Phys. 82, 5820308 (2016).

    Article  Google Scholar 

  4. F. Albert and A. G. R. Thomas, Plasma Phys. Control. Fusion 58, 103001 (2016).

    Article  ADS  Google Scholar 

  5. S. Banerjee et al., Phys. Rev. ST Accel. Beams 16, 031302 (2013).

    Article  ADS  Google Scholar 

  6. D. J. Spence and S. M. Hooker, Phys. Rev. E 63, 015401 (2000).

    Article  ADS  Google Scholar 

  7. H. Y. Lu et al., Appl. Phys. Lett. 99, 091502 (2011).

    Article  ADS  Google Scholar 

  8. C. E. Clayton et al., Phys. Rev. Lett. 105, 105003 (2010).

    Article  ADS  Google Scholar 

  9. S. Kneip et al., Phys. Rev. Lett. 103, 035002 (2009).

    Article  ADS  Google Scholar 

  10. W. Lu et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007).

    Article  ADS  Google Scholar 

  11. J. Kim and G. J. Kim, J. Korean Phys. Soc. 62, 1662 (2013).

    Google Scholar 

  12. S. Semushin and V. Malka, Rev. Sci. Inst. 72, 2961 (2001).

    Article  ADS  Google Scholar 

  13. J. Kim, S. H. Yoo, G. J. Kim and J. U. Kim, J. Korean Phys. Soc. 57, 320 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  14. K. A. Nugent, Appl. Opt. 18, 3101 (1985).

    Article  ADS  Google Scholar 

  15. M. Kalal and K. A. Nugent, Appl. Opt. 27, 1956 (1988).

    Article  ADS  Google Scholar 

  16. C. Xia et al., Phys. Plasmas 18, 113101 (2011).

    Article  ADS  Google Scholar 

  17. C. Kamperidis, V. Dimitriou, S. P. D. Mangles, A. E. Dangor and Z. Najmudin, Plasma Phys. Control. Fusion 56, 084007 (2014).

    Article  ADS  Google Scholar 

  18. S. P. D. Mangles et al., Phys. Rev. Lett. 96, 215001 (2006).

    Article  ADS  Google Scholar 

  19. Y. Ma et al., Phys. Plasmas 22, 083102 (2015).

    Article  ADS  Google Scholar 

  20. S. P. D. Mangles et al., Plasma Phys. Control. Fusion 48, B83 (2006).

    Article  Google Scholar 

  21. W. Lu et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007).

    Article  ADS  Google Scholar 

  22. N. E. Andreev, L. M. Gorbunov, P. Mora and R. R. Ramazashvili, Phys. Plasmas 14, 083104 (2007).

    Article  ADS  Google Scholar 

  23. A. G. R. Thomas et al., Phys. Rev. Lett. 98, 095004 (2007).

    Article  ADS  Google Scholar 

  24. W. Li et al., Phys. Plasmas 20, 113106 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Kim.

Additional information

An erratum to this article is available at https://doi.org/10.3938/jkps.71.592.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Hwangbo, Y.H. & Lee, SY. High energy electron beams from a laser wakefield acceleration with a long gas jet. Journal of the Korean Physical Society 71, 256–263 (2017). https://doi.org/10.3938/jkps.71.256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.256

Keywords

Navigation