Skip to main content
Log in

Hyperbolic octonion formulation of the fluid Maxwell equations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The equations of compressible ideal fluids analogous to those of electromagnetism are reformulated in terms of hyperbolic octonions. Furthermore, the wave equations with source terms are generalized in a compact and elegant form. The analogy between fluid mechanics and electromagnetism is also argued by considering the previous octonionic formulations in relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell, Philos. Trans. 155, 459 (1865).

    Article  Google Scholar 

  2. J. G. Logan, Phys. Fluids 5, 868 (1962).

    Article  ADS  Google Scholar 

  3. O. V. Troshkin, Comp. Maths. Math. Phys. 33, 1613 (1993).

    MathSciNet  Google Scholar 

  4. H. Marmanis, Phys. Fluids 10, 1428 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Kambe, Fluid Dyn. Res. 42, 055502 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Kambe, Frontiers of Fundamental Physics and Physics Education Research, editted by B. G. Sidharth et al. (Springer, Cham, 2014), Chap. 29, p. 287.

  7. D. F. Scofield and P. Huq, Fluid Dyn. Res. 46, 055513 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. F. Scofield and P. Huq, Fluid Dyn. Res. 46, 055514 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. J. Thompson and T. M. Moeller, Phys. Plasmas 19, 010702 (2012).

    Article  ADS  Google Scholar 

  10. W. R. Hamilton, Elements of Quaternions. vols I, II and III. (Chelsea, New York, 1899).

    MATH  Google Scholar 

  11. J. C. Baez, Bull. Amer. Math. Soc. 39, 145 (2001).

    Article  MathSciNet  Google Scholar 

  12. V. L. Mironov and S. Mironov, J. Math. Phys. 50, 012901 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. L. Mironov and S. Mironov, Int. J. Mod. Phys. A 24, 4157 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. L. Mironov and S. Mironov, J. Math. Phys. 50, 012302 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Tolan, M. Tanisli and S. Demir, Int. J. Theor. Phys. 52, 4488 (2013).

    Article  MathSciNet  Google Scholar 

  16. S. Demir, M. Tanisli and T. Tolan, Int. J. Mod. Phys. A 28, 1350112 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Carmody, Appl. Math. Comput. 28, 47 (1988).

    Article  MathSciNet  Google Scholar 

  18. K. Carmody, Appl. Math. Comput. 84, 27 (1997).

    Article  MathSciNet  Google Scholar 

  19. P. S. Bisht and O. P. S. Negi, Indian J. Pure Appl. Phys. 31, 292 (1993).

    Google Scholar 

  20. M. Gogberashvili, J. Phys. A: Math. Gen. 39, 7099 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Candemir, K. özdas, M. Tanisli and S. Demir, Z. Naturforsch. A 63, 15 (2008).

  22. P. S. Bisht and O. P. S. Negi, Pramana-J. Phys. 73, 605 (2009).

    Article  ADS  Google Scholar 

  23. P. Nurowski, Acta Pyhsica Polonica A 116, 992 (2009).

    Article  Google Scholar 

  24. M. E. Kansu, M. Tanisli and S. Demir, Eur. Phys. J. Plus 69, 127 (2012).

    Google Scholar 

  25. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Mod. Phys. A 28, 1350125 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Demir, Int. J. Theor. Phys. 52, 105 (2013).

    Article  MathSciNet  Google Scholar 

  27. B. C. Chanyal, J. Math. Phys. 56, 051702 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. B. C. Chanyal, Rep. Math. Phys. 76, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  29. P. S. Bisht, S. Dangwal and O. P. S. Negi, Int. J. Theor. Phys. 47, 2297 (2008).

    Article  MathSciNet  Google Scholar 

  30. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Theor. Phys. 50, 1919 (2011).

    Article  MathSciNet  Google Scholar 

  31. B. C. Chanyal, V. K. Sharma and O. P. S. Negi, Int. J. Theor. Phys. 54, 3516 (2015).

    Article  MathSciNet  Google Scholar 

  32. S. Demir, M. Tanisli and M. E. Kansu, Int. J. Theor. Phys. 52, 3696 (2013).

    Article  Google Scholar 

  33. J. Köplinger, Appl. Math. Comput. 182, 443 (2006).

    Article  MathSciNet  Google Scholar 

  34. M. Gogberashvili, Int. J. Mod. Phys. A 21, 3513 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  35. V. Dzhunushaliev, Phys. Lett. A 355, 298 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  36. V. Dzhunushaliev, J. Math. Phys. 49, 042108 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Dzhunushaliev, Ann. Phys. 522, 382 (2010).

    Article  MathSciNet  Google Scholar 

  38. L. D. Landau and E. M. Lifshits, Fluid Mechanics, 2nd ed., (Pergamon Press, Oxford, 1987).

    MATH  Google Scholar 

  39. M. Tanisli, S. Demir and N. S¸ahin, J.Math. Phys. 56, 091701 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, S., Tanişli, M. Hyperbolic octonion formulation of the fluid Maxwell equations. Journal of the Korean Physical Society 68, 616–623 (2016). https://doi.org/10.3938/jkps.68.616

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.616

Keywords

Navigation