Skip to main content
Log in

Carrier lifetimes in thin-film photovoltaics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Hall, Phys. Rev. 87, 387 (1952).

    Article  ADS  Google Scholar 

  2. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  Google Scholar 

  3. D. K. Schroder, IEEE Trans. Electron Dev. 44, 160 (1997).

    Article  ADS  Google Scholar 

  4. Semiconductor Diagnostics Inc., Contamination monitoring system based on SPV diffusion length measurement manual SDI (2000).

    Google Scholar 

  5. A. Cuevas, M. Stocks, D. Macdonald and R. Sinton, in Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Vienna, Austria, July 6-10, 1998), p. 1236.

    Google Scholar 

  6. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. Photovoltaics 13, 209 (2005).

    Article  Google Scholar 

  7. K. Ramanathan et al., Prog. Photovoltaics 11, 225 (2003).

    Article  Google Scholar 

  8. F. Abou-Elfotouh, H. Moutinho, A. Bakry, T. J. Coutts and L. L. Kazmerski, Sol. Cells 30, 151 (1991)

    Article  Google Scholar 

  9. J. Herrero and C. Guillen, J. Appl. Phys. 69, 429 (1991)

    Article  ADS  Google Scholar 

  10. M. Angelov, R. Goldhahn, G. Gobsch, M. Kanis and S. Fiechter, J. Appl. Phys. 75, 5361 (1994)

    Article  ADS  Google Scholar 

  11. Y. Kuwahara, H. Oyanagi, H. Yamaguchi, M. Aono, S. Shirakata and S. Isomura, J. Appl. Phys. 76, 7864 (1994)

    Article  ADS  Google Scholar 

  12. A. A. Mc-Daniel, J. W. P. Hsu and A. M. Gabor, Appl. Phys. Lett. 70, 3555 (1997)

    Article  ADS  Google Scholar 

  13. S. Zott, K. Leo, M. Ruckh and H. W. Schock, J. Appl. Phys. 82, 356 (1997).

    Article  ADS  Google Scholar 

  14. M. Tanda, S. Manaka, A. Yamada, M. Konagai and K. Takahashi, Jpn. J. Appl. Phys. 32, 1913 (1993).

    Article  ADS  Google Scholar 

  15. U. Rau, M. Schmitt, D. Hillburger, F. Engelhardt, O. Seifert, J. Parisi, W. Riedl, J. Rimmasch and F. Karg, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference (Washington, DC, USA, May 13-17, 1996), p. 1005.

    Google Scholar 

  16. W. M. Metzger, D. Albin, D. Leivl, P. Scheidon, X. Li, B. M. Keyers and R. A. Ahrenkiel, J. Appl. Phys. 94, 3549 (2003).

    Article  ADS  Google Scholar 

  17. G. Bacher, W. Braun, B. Ohnesorge, A. Forchel, F. W. Karg and W. Riedl, Cryst. Res. Technol. 31, 737 (1996).

    Google Scholar 

  18. R. Weigand, G. Bacher, B. Ohnesorge, A. Forchel, W. Riedl and F. H. Karg, in Proceeding of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Vienna, Austria, July 6-10, 1998), p.573.

  19. B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl and F. H. Karg, Appl. Phys. Lett. 73, 1224 (1998).

    Article  ADS  Google Scholar 

  20. S. Shimakawa, K. Kitani, S. Hayashi, T. Satoh, Y. Hashimoto, Y. Takahashi and T. Negami, Phys. Status Solidi A 203, 2630 (2006).

    Article  ADS  Google Scholar 

  21. J. Palm, V. Probst and F. H. Karg, Sol. Energy 77, 757 (2004).

    Article  ADS  Google Scholar 

  22. V. Probst et al., Thin Solid Films 387, 262 (2001).

    Article  ADS  Google Scholar 

  23. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed (Wiley, New York, 1998).

    Google Scholar 

  24. D. A. Neamen, Semiconductor Physics & Devices, (Irwin Book Team, 1997).

    Google Scholar 

  25. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  Google Scholar 

  26. R. K. Ahrenkiel and M. S. Lundstrom, Minority Carriers in III-V Semiconductors: Physics and Applications (Academic, San Diego, CA, 1993).

    Google Scholar 

  27. W. K. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B. M. Keyes and R. K. Ahrenkiel, J. Appl. Phys. 94, 3549 (2003).

    Article  ADS  Google Scholar 

  28. M. Keyes, P. Dippo, W. K. Metzger, J. Abusham and R. Noufi, J. Appl. Phys. 94, 5584 (2003).

    Article  ADS  Google Scholar 

  29. L. Repins et al., Prog. Photovoltaics 14, 25 (2006).

    Article  Google Scholar 

  30. S. S. Li, Sheng, B. J. Stanbery, C. H. Huang, C. H. Chang, Y. S. Chang and T. J. Anderson, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference (Washington, DC, USA, May 13-17, 1996), p. 821.

  31. C. H. Huang, S. S. Li, B. J. Stanbery, C. H. Chang and T. J. Anderson, in Proceedings of the 26th IEEE Photovoltaic Specialists Conference (Anaheim, CA, USA, September 29 - October 3, 1997), p. 407.

  32. S. Shirakata and T. Nakada, Thin solid films 515, 6151 (2007).

    Article  ADS  Google Scholar 

  33. B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl and F. H. Karg, Appl. Phys. Lett. 73, 1224 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyun Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, D. Carrier lifetimes in thin-film photovoltaics. Journal of the Korean Physical Society 67, 1064–1070 (2015). https://doi.org/10.3938/jkps.67.1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1064

Keywords

Navigation