Skip to main content
Log in

Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lee, C. Chuang, J. M. Quivey, T. L Phillips, P. Akazawa, L. J. Verhey and P. Xia, Int. J. Radiat. Oncol. Biol. Phys. 53, 630 (2002).

    Article  Google Scholar 

  2. S. Hsu, P. L. Roberson, Y. Chen, R. B. Marsh, L. J. Pierce and J. M. Moran, Phys. Med. Biol. 53, 2593 (2008).

    Article  Google Scholar 

  3. T. C. Yip and G. N. Ege, Clin. Radiol. 35, 149 (1985).

    Article  Google Scholar 

  4. G. K. Svensson, B. E. Bjarngard, G. T. Chen and R. R weichselbaum, Int. J. Radiat. Oncol. Biol. Phys. 2, 705 (1977).

    Article  Google Scholar 

  5. B. Demir, M. Okutan, A. Cakir, E. Goksel and H. Bilge, Med. Dosim. 34, 311 (2009).

    Article  Google Scholar 

  6. S. C. Sharma and M. W. Johnson, Med. Phys. 20, 377 (1993).

    Article  Google Scholar 

  7. H. F. Xiang, J. S Song, D. W. Chin, R. A. Cormack, R. B. Tishler, G. M. Makrigiorgos, L. E. Court and L. M Chin, Med. Phys. 34, 1266 (2007).

    Article  Google Scholar 

  8. A. C. Shiau, M. Chiu, T. Chen, J. Chiou, P. Shueng, S. Chen, W. Chen and W. Kuan, Med. Dosim., (2012), in press.

  9. Y. Liu, H. Chen, S. Ho, C. Kuo, C. Chen, M. M. Chao, H. Niu, J. H. Chao, J. Wu, T. Chen and J. Wu, Nucl. Instrum. Methods Phys. Res., Sect. A 652, 850 (2011).

    Article  ADS  Google Scholar 

  10. E. I. Parasi, D. Shvydka, D. Pearson, M. Gopalakrishnan and J. J. Feldmeier, Appl. Radiat. Isot. 67, 1438 (2008).

    Google Scholar 

  11. K. Y Quach, J. Morales, M. J. Butson, A. B. Rosenfeld and P. E. Metcalfe, Med. Phys. 27, 1676 (2000).

    Article  Google Scholar 

  12. J. B. Chung, J. W Lee, Y. L. Kim, D. H. Lee, K. S. Choi, J. S. Kim, I. A. Kim, S. Hong and T. S. Suh, Kor. J. Med. Phys. 18, 48 (2007).

    Google Scholar 

  13. J. B. Chung, J. W Lee, T. S. Suh, D. H. Lee, B. Y. Choe, Y. S. Kim, J. S. Kim, I. A. Kim, K. S. Choi and S. J. Ye, J. Korean Phys. Soc. 55, 2566 (2009).

    Article  Google Scholar 

  14. R. Ramaseshan, K. S. Kohli, T. J. Zhang, T. Lam, B. Norlinger, A. Halli and M. Islam, Phys. Med. Biol. 49, 4031 (2004).

    Article  Google Scholar 

  15. P. Halvorsen, Med. Phys. 32, 110 (2005).

    Article  Google Scholar 

  16. M. Soubra, J. Cygler and G. Mackay, Med. Phys. 21, 567 (1994).

    Article  Google Scholar 

  17. N. Jornet, P. Carrasco, D. Jurado, A. Ruiz, T. Eudaldo and M. Ribas, Med. Phys. 31, 2534 (2004).

    Article  Google Scholar 

  18. S. C. Sharma and M. W. Johnson, Med. Phys. 20, 377 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Beom Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, JB., Kim, JS., Kim, IA. et al. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams. Journal of the Korean Physical Society 61, 1143–1147 (2012). https://doi.org/10.3938/jkps.61.1143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1143

Keywords

Navigation