Skip to main content
Log in

Temperature-dependent catalyst-free growth of ZnO nanostructures on Si and SiO2/Si substrates via thermal evaporation

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The catalyst-free growth of ZnO nanostructures on Si and SiO2/Si substrates as a function of substrate temperature was carried out using a thermal evaporation method. We observed that the shapes and the morphologies of the ZnO nanostructures could be controlled by using the substrate temperature and the presence of an oxide layer on the surface of the substrate. The shape of the ZnO nanostructure was changed from an embossed nanocantilever to a nanowire as the growth temperature was decreased from 500 °C to 430 °C. At 360 °C, a winding stem-like nanostructure with thin and short branch nanowires on the facet of the nanostructure was produced. In particular, at a growth temperature of 430 °C, a ZnO buffer layer was formed during the initial growth when an Si substrate was used. However, no ZnO buffer layer was observed when a SiO2/Si substrate was used. The formation of a buffer layer significantly affected the crystalline structure. Defects were observed in the embossed nanocantilevers and the nanowires grown on SiO2/Si but not in those grown on Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wu, H. Yan and P. Yang, Chem. Eur. J. 8, 1260 (2002).

    Article  Google Scholar 

  2. J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).

    Article  Google Scholar 

  3. G. Y. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998).

    Article  Google Scholar 

  4. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano Lett. 7, 1003 (2007).

    Article  ADS  Google Scholar 

  5. J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth and S. Mathur, J. Phys. Chem. C 112, 14639 (2008).

    Article  Google Scholar 

  6. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).

    Article  ADS  Google Scholar 

  7. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan and L. Vayssieres, Nanotechnology 17, 4995 (2006).

    Article  ADS  Google Scholar 

  8. J. X. Park, D. E. Song and S. S. Kim, Nanotechnology 19, 105503 (2008).

    Article  ADS  Google Scholar 

  9. A. Nadarajah, R. C. Word, J. Meiss and R. Konenkamp, Nano Lett. 8, 534 (2008).

    Article  ADS  Google Scholar 

  10. X. W. Sun, J. Z. Huang, J. X. Wang and Z. Xu, Nano Lett. 8, 1219 (2008).

    Article  ADS  Google Scholar 

  11. M. Law, E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  ADS  Google Scholar 

  12. J. B. Baxter and E. S. Aydila, Appl. Phys. Lett. 86, 053114 (2005).

    Article  ADS  Google Scholar 

  13. M-Y. Choi, D. H. Choi, M-J. Jin, I. S. Kim, S-H. Kim, J-Y. Choi, S. Y. Lee, J. M. Kim and S-W. Kim, Adv. Mater. 21, 2185 (2009).

    Article  Google Scholar 

  14. B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, Appl. Phys. Lett. 83, 1635 (2003).

    Article  ADS  Google Scholar 

  15. W. I. Park, D. H. Kim, S-W. Jung and G-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).

    Article  ADS  Google Scholar 

  16. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).

    Article  ADS  Google Scholar 

  17. H. Q. Yang, Y. Z. Song, L. Li, J. H. Ma, D. C. Chen, S. L. Mai and H. Zhao, Cryst. Growth Des. 8, 1039 (2008).

    Article  Google Scholar 

  18. Y. Sun, G. M. Fuge and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).

    Article  ADS  Google Scholar 

  19. S. Li, X. Zhang, B. Yan and T. Yu, Nanotechnology 20, 495604 (2009).

    Article  ADS  Google Scholar 

  20. B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 81, 757 (2002).

    Article  ADS  Google Scholar 

  21. A. Fontcuberta-i-Morral, J. Arbiol, J. D. Prades, A. Cirera and J. R. Morante, Appl. Phys. Lett. 19, 1347 (2007).

    Google Scholar 

  22. J. D. Pardes, J. Arbiol, A. Cirera, J. R. Morante and A. Fontcuberta-i-Morral, Appl. Phys. Lett. 91, 123107 (2007).

    Article  ADS  Google Scholar 

  23. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13, 113 (2001).

    Article  Google Scholar 

  24. C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee, Adv. Funct. Mater. 14, 589 (2004).

    Article  Google Scholar 

  25. L. S. Wang, X. Z. Zhang, S. Q. Zhao, G. T. Zhou, Y. L. Zhou and J. J. Qi, Appl. Phys. Lett. 86, 024108 (2005).

    Article  ADS  Google Scholar 

  26. J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu and J. G. Hou, Appl. Phys. lett. 86, 031909 (2005).

    Article  ADS  Google Scholar 

  27. Y. Sun, Q. Zhao, J. Gao, R. Zhu, X. Wang, J. Xu, L. Chen, J. Zhang and D. Yu, Cryst. Eng. Comm. 13, 606 (2011).

    Google Scholar 

  28. S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang and Y. Lu, J. Cryst. Growth 225, 197 (2001).

    Article  ADS  Google Scholar 

  29. Z. L. Wang, J. Phys. Condens. Matter 16, R829 (2004).

    Article  ADS  Google Scholar 

  30. J. S. Jeong, J. Y. Lee, J. H. Cho, C. J. Lee, S-J. An, G-C. Yi and R. Gronsky, Nanotechnology 16, 2455 (2005).

    Article  Google Scholar 

  31. Z. L. Wang, X. Y. Kong and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).

    Article  ADS  Google Scholar 

  32. X. D. Wang, Y. Ding, C. J. Summers and Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004).

    Article  Google Scholar 

  33. J. S. Jeong and J. Y. Lee, Nanotechnology 21, 475603 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mann-Ho Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Park, S.H., Lee, WJ. et al. Temperature-dependent catalyst-free growth of ZnO nanostructures on Si and SiO2/Si substrates via thermal evaporation. Journal of the Korean Physical Society 60, 1877–1885 (2012). https://doi.org/10.3938/jkps.60.1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1877

Keywords

Navigation