Skip to main content
Log in

Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear’s structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear’s anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear’s anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear’s anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous pathologies of the inner ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Naganawa and T. Nakashima, Acta. Otolaryngol. Suppl. 560, 15 (2009).

    Article  Google Scholar 

  2. S. Mohan, E. Hoeffner, D. C. Bigelow and L. A. Loevner, Magn. Reson. Imaging. Clin. North Am. 20, 545 (2012).

    Article  Google Scholar 

  3. D. G. Pappas and J. K. Curé, Otolaryngol. Clin. North. Am. Dec. 35, 1317 (2002).

    Article  Google Scholar 

  4. K. Marsot-Dupuch, J. Vignaud, M. Mehdi, C. Pharaboz and B. Meyer, Eur. Radiol. 6, 621 (1996).

    Article  Google Scholar 

  5. J. I. Lane, R. J. Witte, B. Bolster, M. A. Bernstein, K. Johnson and J. Morris, Am. J. Neuroradiol. 29, 1436 (2008).

    Article  Google Scholar 

  6. J. I. Lane, H. Ward, R. J. Witte, M. A. Bernstein and C. L. W. Driscoll, Am. J. Neuroradiol. 25, 618 (2004).

    Google Scholar 

  7. S. Naganawa and T. Nakashima, Acta Otolaryngol. Suppl. 560, 15 (2009).

    Article  Google Scholar 

  8. T. Nakada, Brain Dev. 29, 325 (2007).

    Article  Google Scholar 

  9. W. A. Edelstein, G. H. Glover, C. J. Hardy and R. W. Redington, Magn. Reson. Med. 3, 604 (1986).

    Article  Google Scholar 

  10. T. Takahara, H. Hoogduin, F. Vissor, S. Naganawa, T. Kwee and P. Luijten, Proc. Intl. Soc. Mag. Reson. Med. 18, 4448 (Stockholm, 2010).

    Google Scholar 

  11. T. S. Ibrahim, R. Lee, A. M. Abduljalil, B. A. Baertlein and P-M. L. Robitaille, Magn. Reson. Imag. 19, 219 (2001).

    Article  Google Scholar 

  12. P. Roschmann, Med. Phy. 14, 922 (1987).

    Article  Google Scholar 

  13. H. Bomsdorf, T. Helzel, D. Kunz, P. Roschmann, O. Tschendel and J. Wieland, NMR Biomed. 1, 151 (1988).

    Article  Google Scholar 

  14. D. I. Hoult and P. C. Lauterbur, J. Magn. Reson. 34, 425 (1979).

    ADS  Google Scholar 

  15. Y. Zhu, Proc. Intl. Soc. Mag. Reson. Med. 10, 190 (Hawaii, 2002).

    Google Scholar 

  16. Y. Zhu, Magn. Reson. Med. 51, 775 (2004).

    Article  Google Scholar 

  17. U. Katscher, P. Bornert, C. Leussler and J. S. van den Brink, Proc. Intl. Soc. Mag. Reson. Med. 10, 189 (Hawaii, 2002).

    Google Scholar 

  18. U. Katscher, P. Bornert, C. Leussler and J. S. van den Brink, Magn. Reson. Med. 49, 144 (2003).

    Article  Google Scholar 

  19. D. O. Brunner, N. De Zanche, J. Frohlich, J. Paska and K. P. Pruessmann, Nature 457, 994 (2009).

    Article  ADS  Google Scholar 

  20. B. Wu et al., IEEE Trans. Biomed. Eng. 57, 397 (2010).

    Article  ADS  Google Scholar 

  21. S. Schmitter, L. DelarBarre, X. Wu, A. Greiser, D. Wang, E. J. Auerbach, J. T. Vaughan, K. Ugurbil and P. F. Van de Moortele, Magn. Reson. Med. 70, 1210 (2013).

    Article  Google Scholar 

  22. G. Chang, K. M. Friedrich, L. Wang, R. L. Vieira, M. E. Schweitzer, M. P. Recht, G. C. Wiggins and R. R. Regatte, J. Magn. Reson. Imag. 31, 740 (2010).

    Article  Google Scholar 

  23. P. F. van de Moortele, C. Akgun, G. Adiany, S. Moeller, J. Ritter, C. M. Collins, M. B. Smith, J. T. Vaughan and K. Ugurbil, Magn. Reson. Med. 54, 1503 (2005).

    Article  Google Scholar 

  24. D. Darji, K. N. Kim, G. Patel, H. P. Fautz, J. Bernarding and O. Speck, Proc. Intl. Soc. Mag. Reson. Med. 19, 324 (Montreal, 2011).

    Google Scholar 

  25. L. Winter et al., Eur Radiol. 22, 2211 (2012).

    Article  Google Scholar 

  26. P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza and O. M. Mueller, Magn. Reson. Med. 16, 192 (1990).

    Article  Google Scholar 

  27. D. K. Sodickson and W. J. Manning, Magn. Reson. Med. 38, 591 (1997).

    Article  Google Scholar 

  28. K. P. Pruessmann, M. Weiger and M. B. Scheidegger, Magn. Reson. Med. 42, 952 (1999).

    Article  Google Scholar 

  29. M. A. Griswold, P. M. Jakob and R. M. Heidemann, Magn. Reson. Med. 47, 1202 (2002).

    Article  Google Scholar 

  30. U. Katscher and P. Bornert, NMR Biomed. 19, 393 (2006).

    Article  Google Scholar 

  31. K. N. Kim, G. C. Han, P. Heo, H. Jeong, S. M. Hong, J. H. Park, M. K. Woo, Y. B. Kim and Z. H. Cho, Proc. Intl. Soc. Mag. Reson. Med. 21, 2725 (Salt Lake City, 2013).

    Google Scholar 

  32. K. N. Kim, P. Heo, G. C. Han, H. Jeong, S. M. Hong, M. K. Woo, J. H. Park, Y. B. Kim and Z. H. Cho, Proc. Intl. Soc. Mag. Reson. Med. 21, 2726 (Salt Lake City, 2013).

    Google Scholar 

  33. D. M. Pozar, Microwave engineering (John Willey & Sons Inc, New York, 2011), Vol. 1, Chap. 7, p. 328.

    Google Scholar 

  34. S. B. King, Proc. Intl. Soc. Mag. Reson. Med. 21, 7307 (Salt Lake City, 2013).

    Google Scholar 

  35. P. Yazdanbakhsh and K. Solbach, Magn. Reson. Med. 66, 270 (2011).

    Article  Google Scholar 

  36. C. H. Cunningham, J. M. Pauly and K. S. Nayak, Magn. Reson. Med. 55, 1326 (2006).

    Article  Google Scholar 

  37. N. M. Rofsky, V. S. Lee, G. Laub, M. A. Pollack, G. A. Krinsky, D. Thomasson, M. M. Ambrosino and J. C. Weinreb, Radiol. 212, 876 (1999).

    Article  Google Scholar 

  38. S. Lee, M. T. Lavelle, N. M. Rofsky, G. Laub, D. M. Thomasson, G. A. Krinsky and J. C. Weinreb, Radiol. 215, 365 (2000).

    Article  Google Scholar 

  39. S. G. Wetzel. G. Johnson, A. G. Tan, S. Cha, E. A. Knopp, V. S. Lee, D. M. Thomasson and N. M. Rofsky, Am. J. Neuroradiol. 23, 995 (2002).

    Google Scholar 

  40. W. Bakalski, W. Simburger, H. Knapp, H. D. Wohlmuth and A. L. Scholtz, Proc. Intl. Microwave Symp. 1, 209 (Seattle, 2002).

    Google Scholar 

  41. G. E. Christensen, J. He, J. A. Dill, J. T. Rubinstein, M. W. Vannier and G. Wang, Acad. Radiol. 10, 988 (2003).

    Article  Google Scholar 

  42. D. M. Lasker, G. C. Han, H. J. Park and L. B. Minor, J. Assoc. Res. Otolaryngol. 9, 334 (2008).

    Article  Google Scholar 

  43. A. N. Salt. Ann. N. Y. Acad. Sci. 942, 306 (2001).

    Article  ADS  Google Scholar 

  44. R. R. Ciuman, J. Laryngol. Otol. 123, 151 (2009).

    Article  Google Scholar 

  45. P. Gates, Intern. Med. J. 35, 488 (2005).

    Article  Google Scholar 

  46. S. D. Rauch, Otolaryngol. Clin. North Am. 43, 1011 (2010).

    Article  Google Scholar 

  47. C. L. Driscoll and J. I. Lane, Otolaryngol. Clin. North Am. 40, 439 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bo Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KN., Heo, P., Kim, YB. et al. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T. Journal of the Korean Physical Society 66, 175–182 (2015). https://doi.org/10.3938/jkps.66.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.175

Keywords

Navigation