Skip to main content
Log in

Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F.g−1 at a scan rate of 5 mV.s−1 is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW.kg−1 and specific energy of 64 Wh.kg−1. The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. B. E. Conway, J. Electrochem. Soc. 138, 1539 (1991).

    Google Scholar 

  2. E. Frackowiak, F. Beguin, Carbon 40, 1775 (2002).

    Article  Google Scholar 

  3. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, Nat. Mater. 4, 366 (2005).

    Article  ADS  Google Scholar 

  4. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang and S. Wang, J. Power Sources 190, 578 (2009).

    Article  Google Scholar 

  5. Y. Y. Horng, Y. C. Lu, Y. K. Hsu, C. C. Chen, L. C. Chen and K. H. Chen, J. Power Sources 195, 4418 (2010).

    Article  Google Scholar 

  6. A. B. Afzal, M. J. Akhtar, M. Nadeem, M. Ahmad, M. M. Hassan T. Yasin and M. Mehmood, J. Phys. D: Appl. Phys. 42, 015411 (2009).

    Article  ADS  Google Scholar 

  7. A. F. Baldissera, D. B. Freitas, C. A. Ferreira, Mater. Corr. 9, 790 (2010).

    Article  Google Scholar 

  8. J. R. Cardenas, M. G. O. deFranc, E. A. deVasconcelos, W. M. deAzevedo and E. F. da Silva Jr, J. Phys. D: Appl. Phys. 40, 1068 (2007).

    Article  ADS  Google Scholar 

  9. V. S. Jamadade, D. S. Dhawale, C. D. Lokhande, Synth. Met. 160, 955 (2010).

    Article  Google Scholar 

  10. V. Gupta, N. Miura, Electrochem. Solid-State Lett. 8, A630 (2005).

    Article  Google Scholar 

  11. K. Rajendra Prasad, N. Munichandraiah, J. Electrochem. Soc. 149, A1393 (2002).

    Article  Google Scholar 

  12. D. S. Dhawale, R. R. Salunkhe, V. S. Jamadade, D. P. Dubal, S. M. Pawar, C. D. Lokhande, Curr. Appl. Phys. 10, 904 (2010).

    Article  ADS  Google Scholar 

  13. G. Y. Zhao and H. L. Li, Micropor. Mesopor. Mater. 110, 590 (2008).

    Article  Google Scholar 

  14. V. Gupta and N. Miura, J. Power Sources 157, 616 (2006).

    Article  Google Scholar 

  15. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frakowiak, Chem. Phys. Lett. 347, 36 (2001).

    Article  ADS  Google Scholar 

  16. S. W. Phang, M. Tadokoro, J. Watanabe and N. Kuramoto, Curr. Appl. Phys. 8, 391 (2008).

    Article  ADS  Google Scholar 

  17. F. Fusalba, P. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc. 148, A1 (2001).

    Article  Google Scholar 

  18. S. Mentus, G. Ciric-Marjanovic, M. Trchova, J. Stejskal, Nanotechnology 20, 245601 (2009).

    Article  ADS  Google Scholar 

  19. Y. S. Kim, J. S. Sohn, H. R. Ju, A. I. Inamdar and H. Im, J. Korean Physi. Soc. 60, 1767 (2012).

    Article  ADS  Google Scholar 

  20. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci. 27, 85 (2004).

    Article  Google Scholar 

  21. J. Stejskal, I. Sapurina, U. Schubert, N. Hüsing, R. Laine, Springer, Wien 199 (2008).

  22. W. M. Chen, Y. H. Huang and L. X. Yuan, J. Electroana. Chem. 660, 108 (2011).

    Article  Google Scholar 

  23. I. Sapurina, J. Stejskal, Polym. Int. 57, 1295 (2008).

    Article  Google Scholar 

  24. A. Rahy, M. Sakrout, S. Manohar, S. J. Cho, J. Ferraris and D. J. Yang, Chem. Mater. 20, 4808 (2008).

    Article  Google Scholar 

  25. X. Jing, Y. Wang, D. Wu and J. Qiang, J. Ultrasonic Sonochem. 14, 75 (2006).

    Article  Google Scholar 

  26. S. S. Joshi and C. D. Lokhande, J. Mater. Sci. 42, 1304 (2007).

    Article  ADS  Google Scholar 

  27. H. D. Tran, J. M. D’Arcy, Y. Wang, P. J. Beltramo, V. A. Strong and R. B. Kaner, J. Mater. Chem. 21, 3534 (2011).

    Article  Google Scholar 

  28. X. Li, G. Wang, X. Li, Surf. Coat. Technol. 197, 56 (2005).

    Article  Google Scholar 

  29. J. Jiang, L. Ai and L.-C. Li, J. Mater. Sci. 44, 1024 (2009).

    Article  ADS  Google Scholar 

  30. Y. Tan, Y. Zhang, J. Kan, eXPRESS Polymer Letters 3, 333 (2009).

    Article  Google Scholar 

  31. L. Zheng, Y. Wang, X. Wang, N. Li, H. An, H. Chen and J. Guo, J. Power Sources 195, 1747 (2010).

    Article  Google Scholar 

  32. M. R. Saboktakin, A. Maharramov and M. A. Ramazanov, Nature and Science 5, 67 (2007).

    Google Scholar 

  33. A. Tiwari, V. Singh, EXPRESS Polymer Letters 1, 308 (2007).

    Article  Google Scholar 

  34. Z. Chen, L. Xu, W. Li, M. Waje and Y. Yan, Nanotechnology 17, 5254 (2006).

    Article  ADS  Google Scholar 

  35. C. C. Hu and T. W. Tsou, Electrochem. Commun. 4, 105 (2002).

    Article  Google Scholar 

  36. T. P. Gujar, W. Y. Kim, I. Puspitasari, K. D. Jung and O. S. Joo, Int. J. Electrochem. Sci. 2, 666 (2007).

    Google Scholar 

  37. P. R. Deshmukh, S. N. Pusawale, V. S. Jamadade, U. M. Patil and C. D. Lokhande, J. Alloys and Comp. 509, 5064 (2011).

    Article  Google Scholar 

  38. C. C. Hu, W. C. Chen and K. H. Chang, J. Electrochem. Soc. 151, A281 (2004).

    Article  Google Scholar 

  39. P. R. Deshmukh, S. N. Pusawale, A. D. Jagadale and C. D. Lokhande, J Mater. Sci. 47, 1546 (2012).

    Article  ADS  Google Scholar 

  40. V. Ganesh, S. Pitachumani and V. Lakshminarayanan, J. Power Sources 158, 1523 (2006).

    Article  Google Scholar 

  41. S. Richard Prabhu Gnanakan, M. Rajasekhar and A. Subramania, Int. J. Electrochem. Sci. 4, 1289 (2009).

    Google Scholar 

  42. F. Pico, J. Ibanez, M. A. Lillo-Rodenas, A. Linares-Solano, R. M. Rojas, J. M. Amarilla and J. M. Rojo, J. Power Sources 176, 417 (2008).

    Article  Google Scholar 

  43. J. M. Ahn, A. I. Inamdar, Y. Jo, J. Kim, W. Jung, H. Im and H. S. Kim, J. Korean Phys. Soc. 64, L182 (2014).

    Article  ADS  Google Scholar 

  44. K. Prasad and N. Munichandraiah, Electrochem. Solid- State Lett. 5, A271 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Lokhande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, P.R., Pusawale, S.N., Shinde, N.M. et al. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method. Journal of the Korean Physical Society 65, 80–86 (2014). https://doi.org/10.3938/jkps.65.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.80

Keywords

Navigation