Skip to main content
Log in

Octonionic matrix representation and electromagnetism

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8×8 matrix representation. In this paper, we consider the eight — dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 × 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 × 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8×8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Proc. Roy. Soc London A133, 60 (1931).

    Article  ADS  Google Scholar 

  2. J. Schwinger, Phys. Rev. 144, 1087 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Zwanziger, Phys. Rev. 176, 1489 (1968).

    Article  ADS  Google Scholar 

  4. C. N. Yang and T. T. Wu, Nucl. Phys. B107, 365 (1976).

    ADS  Google Scholar 

  5. P. Goddard and D. Olive, Rep. Prog. Phys. 41, 1357 (1978).

    Article  ADS  Google Scholar 

  6. G. ’t Hooft, Nucl. Phys. B79, 276 (1974).

    Article  ADS  Google Scholar 

  7. A. M. Polyakov, JETP Lett. 20, 194 (1974).

    ADS  Google Scholar 

  8. B. Julia and A. Zee, Phys. Rev. D11, 2227 (1975).

    ADS  Google Scholar 

  9. E. Witten, Phys. Lett. B86, 283 (1979).

    Article  ADS  Google Scholar 

  10. P. S. Bisht, O. P. S. Negi and B. S. Rajput, Nuovo Cimento 104A, 337 (1991).

    Article  ADS  Google Scholar 

  11. P. S. Bisht, O. P. S. Negi and B. S. Rajput, Prog. Theor. Phys. 85, 157 (1991).

    Article  ADS  Google Scholar 

  12. C. Castro, J. Math. Phys. 48, 73517 (2007).

    Article  Google Scholar 

  13. L. E. Dickson, Ann. Math. 20, 155 (1919).

    Article  MATH  Google Scholar 

  14. W. R. Hamilton, Elements of quaternions (Chelsea Publications Co., New York, 1969).

    Google Scholar 

  15. P. G. Tait, An elementary Treatise on Quaternions (Oxford University Press, New York, 1875).

    Google Scholar 

  16. B. S. Rajput, S. R. Kumar and O. P. S. Negi, Lett. Nuovo Cimento 34, 180 (1982).

    Article  Google Scholar 

  17. V. Majernik, Adv. Cliff. Alg. 9, 119 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. R. P. Graves, Life of Sir William Rowan Hamilton (Arno Press, New York, 1975).

    Google Scholar 

  19. J. C. Baez, Bull. Amer. Math. Soc. 39, 145 (2001).

    Article  MathSciNet  Google Scholar 

  20. R. Foot and G. C. Joshi, Int. J. Theor. Phys. 28, 1449 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Lukierski and F. Toppan, Phys. Lett. B539, 266 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Imaeda, Lett. Nuovo Cimento 50, 271 (1979).

    Article  MathSciNet  Google Scholar 

  23. R. Penny, Amer. J. Phys. 36, 871 (1968).

    Article  ADS  Google Scholar 

  24. A. Gamba, J. Math. Phys. 8, 775 (1967).

    Article  ADS  Google Scholar 

  25. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Mod. Phys. A29, 1450008 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  26. B. C. Chanyal, P. S. Bisht, Tianjun Li and O. P. S. Negi, Int. J. Theor. Phys. 51, 3410 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  27. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Theor. Phys. 49, 1333 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  28. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Theor. Phys. 50, 1919 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  29. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Theor. Phys. 52, 3522 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  30. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Mod. Phys. A28, 1350125 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  31. B. C. Chanyal, Gen. Relativ. Gravit. 46, 16461 (2014).

    Article  MathSciNet  Google Scholar 

  32. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Eng. Res. & Tech. 2, 1459 (2013).

    Google Scholar 

  33. B. C. Chanyal, P. S. Bisht and O. P. S. Negi, J. Theor. Phys. 2, 23 (2013).

    Google Scholar 

  34. B. C. Chanyal, Turk. J. Phys. 38, 174 (2014).

    Article  Google Scholar 

  35. M. Gunaydin and F. Gursey, J. Math. Phys. 14, 1651 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Gunaydin and F. Gursey, Phys. Rev. D9, 3387 (1974).

    ADS  Google Scholar 

  37. K. Imaeda, H. Tachibaba and M. Imaeda, Nuovo Cim. 100B, 53 (1987).

    Article  ADS  Google Scholar 

  38. S. D. Leo and K. A. Khalek, Int. J. Theor. Phys. 37, 1945 (1998).

    Article  MATH  Google Scholar 

  39. S. D. Leo and K. A. Khalek, Prog. Theor. Phys. 96, (1996) 833.

    Article  ADS  Google Scholar 

  40. P. S. Bisht, B. Pandey and O. P. S. Negi, FIZIKA B (Zagreb) 17, 405 (2008).

    ADS  Google Scholar 

  41. P. S. Bisht and O. P. S. Negi, Pramana J. Phys. 73, 605 (2009).

    Article  ADS  Google Scholar 

  42. P. A. M. Dirac, Phys. Rev. 74, 817 (1948).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. B. C. Chanyal, Inter. J. Geom. Meth. Mod. Phys. 12, 1550007 (2015).

    Article  MathSciNet  Google Scholar 

  44. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience Publishers, John Wiley & Sons, New York, 1965).

    Google Scholar 

  45. B. S. Rajput and D. C. Joshi, Pramana J. Phys. 13, 637 (1979).

    Article  ADS  Google Scholar 

  46. E. B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976).

    Google Scholar 

  47. B. C. Chanyal, Indian J. Phys. 88, 1197 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Chanyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanyal, B.C. Octonionic matrix representation and electromagnetism. Journal of the Korean Physical Society 65, 1715–1728 (2014). https://doi.org/10.3938/jkps.65.1715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1715

Keywords

Navigation