Skip to main content
Log in

Monte carlo simulation study of a novel parallel-hole collimator with a CdTe pixelated semiconductor SPECT system

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Recently, many studies have investigated the use of a pixelated semiconductor detector to improve spatial resolution. The purpose of this study was to evaluate novel parallel-hole collimator geometric designs with a CdTe pixelated semiconductor single-photon-emission computed tomography (SPECT) system. The pixelated semiconductor detector was modeled as a PID 350 detector (Ajat Oy Ltd., Finland) with small pixels (0.35 × 0.35 mm2) by using Geant4 Application for Tomographic Emission (GATE) software. We designed a novel parallel-hole collimator consisting of two overlapping parallel-hole collimators. Each hole size was four times that of the pixelated parallel-hole collimator. The overlap ratios of these collimators were 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1. To evaluate the performance of this system, we evaluated the sensitivity and the spatial resolution. The results for our new parallel-hole collimator indicated that the evaluated sensitivity averages using overlap ratios of 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1 were 4.45, 7.56, 7.51, 12.76, 12.65, 20.01, and 19.90 times higher, respectively, than those of the pixelated parallel-hole collimator. The evaluated averages of the spatial resolution varied depending on the source-to-collimator distances. In conclusion, we successfully designed a novel parallel-hole collimator with various overlap ratios of the collimator septal heights with a CdTe pixelated semiconductor SPECT system. Based on our results, we recommend using this collimator with a CdTe pixelated semiconductor SPECT system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Murphy, R. Arseneau, E. Maxon and W. Thompson, J. Nucl. Med. 18, 175 (1977).

    Google Scholar 

  2. J. E. Arnold, A. S. Johnston, and S. M. Pinsky, J. Nucl. Med. 15, 412 (1973).

    Google Scholar 

  3. M. T. Madsen, J. Nucl. Med. 48, 661 (2007).

    Article  Google Scholar 

  4. L. J. Meng, J. W. Tan, K, Spartiotis and T. Schulman, Nucl. Instrum. Meth. Phys. Res. A 604, 548 (2009).

    Article  ADS  Google Scholar 

  5. L. Guerin, L. Verger, V. Rebuffel, and O. Monnet, IEEE Trans. Nucl. Sci. 55, 1573 (2008).

    Article  ADS  Google Scholar 

  6. H. Kim et al., Med. Phys. 33, 465 (2006).

    Article  Google Scholar 

  7. L. Verger et al., IEEE Trans. Nucl. Sci. 51, 3111 (2004).

    Article  ADS  Google Scholar 

  8. K. Ogawa and M. Muraishi, IEEE Trans. Nucl. Sci. 57, 17 (2010).

    Article  ADS  Google Scholar 

  9. S. Jan et al., Phys. Med. Biol. 49, 4543 (2004).

    Article  Google Scholar 

  10. D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).

    Article  Google Scholar 

  11. I. Buvat and D. Lazaro, Nucl. Instrum. Meth. Phys. Res. A 569, 323 (2006).

    Article  ADS  Google Scholar 

  12. D. Lazaro, Z. E. Bitar, V. Breton, D. Hill and I. Buvat, Phys. Med. Biol. 50, 3739 (2005).

    Article  Google Scholar 

  13. S. Staelens, D. Strul, G. Santin, S. Vandenberghe, M. Koole, Y. D’Asseler, I. Lemahieu and R. V. Walle, Phys. Med. Biol. 48, 3021 (2003).

    Article  Google Scholar 

  14. S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini and P. Ubertini, Sensors 9, 3491 (2009).

    Article  Google Scholar 

  15. C. Scheiber, Nucl. Instrum. Meth. Phys. Res. A 448, 513 (2000).

    Article  ADS  Google Scholar 

  16. H. Toyokawa et al., Nucl. Instrum. Meth. Phys. Res. A 636, 5218 (2011).

    Article  Google Scholar 

  17. K. Tsuchiya, I. Takahashi, T. Kawaguchi, K. Yokoi, Y. Morimoto, T. Ishitsu, A. Suzuki, Y. Ueno and K. Kobashi, Ann. Nucl. Med. 24, 301 (2010).

    Article  Google Scholar 

  18. H. Wieczorek and A. Goedicke, IEEE Trans. Nucl. Sci. 53, 1102 (2006).

    Article  ADS  Google Scholar 

  19. A. S. Ahmed, G. H. Kramer, W. Semmler and J. Peter, Nucl. Instrum. Meth. Phys. Res. A 629, 368 (2011).

    Article  ADS  Google Scholar 

  20. Y. J. Lee, H. J. Ryu, S. W. Lee, S. J. Park and H. J. Kim, Nucl. Instrum. Meth. Phys. Res. A 713, 33 (2013).

    Article  ADS  Google Scholar 

  21. T. Frese, N. C. Rouze, C. A. Bouman, K. Sauer and G. D. Hutchins, IEEE Trans. Nucl. Sci. 22, 258 (2003).

    Google Scholar 

  22. Y. J. Lee, H. J. Ryu, H. M. Cho, S. W. Lee, Y. N. Choi and H. J. Kim, J. Korean Phys. Soc. 60, 862 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Kim, DH., Rhee, YC. et al. Monte carlo simulation study of a novel parallel-hole collimator with a CdTe pixelated semiconductor SPECT system. Journal of the Korean Physical Society 64, 1737–1744 (2014). https://doi.org/10.3938/jkps.64.1737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1737

PACS numbers

Keywords

Navigation