Skip to main content
Log in

Energy product and coercivity of a rare-earth-free multilayer FeCo/FePt exchange spring magnet

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using the full potential linearized augmented plane wave (FLAPW) method, we have explored the energy product and the coercivity field of rare-earth-free FeCo/FePt(001) multilayered exchange spring magnet systems. We have considered 5 and 7 monolayers (ML) of a FePt hard layer and 3, 5, 7, and 9 ML of a FeCo soft layer. The FeCo soft layers are found to show close to half metallic features, while the FePt hard layers manifest conventional metallic behavior. A giant perpendicular magnetocrystalline anisotropy energy (EMCA) is observed. For instance, an EMCA of 27.24 meV/cell is found in FeCo(9 ML)/FePt(7 ML) multilayer structure. The energy product almost linearly increases with increasing FeCo thickness, while the coercivity filed shows the opposite behavior. Interestingly, we have obtained that the multilayer structures display very large energy product and coercivity field. For example, FeCo(9 ML)/FePt(5 ML) multilayer has an energy product of about 82 MGOe and a coercivity field of about 130 KOe. Moreover, we find that the multilayer system may show enhanced coercivity field compared with that found in FeCo/FePt bilayer film structures, while the energy product is comparable to that observed in bilayer films. Therefore, our results may imply that the FeCo/FePt multilayer can be employed as a potential rare- earth-free permanent magnet material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).

    Article  ADS  Google Scholar 

  2. G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee and A. Yan, J. Phys. Conference Series, 266, 012052 (2011).

    Article  ADS  Google Scholar 

  3. M. Campos, S. Romero, F. Landgraf, F. Missell, J. Phys. Conference Series 303, 012049 (2011).

    Article  ADS  Google Scholar 

  4. E. F. Kneller and R. H. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

    Article  ADS  Google Scholar 

  5. Y. Choi, J. S. Jiang, J. E. Pearson, S. D. Bader, J. J. Kavich, J. W. Freeland and J. P. Liu, Appl. Phys. Lett. 91, 072590 (2007).

    Google Scholar 

  6. E. E. Fullerton, J. S. Jiang, M. Grimdsitch, C. H. Sowers and S. D. Bader, Phys. Rev. B 58, 12193 (1998).

    Article  ADS  Google Scholar 

  7. C. Rong, Y. Zhang, N. Poudyal, X. Xiong, M. J. Kramer and J. Liu, Appl. Phys. Lett. 96, 102513 (2010).

    Article  ADS  Google Scholar 

  8. X. Liu, S. He, J. Qiu and J. Wang, Appl. Phys. Lett. 98, 222507 (2011).

    Article  ADS  Google Scholar 

  9. N. de Sousa, A. Apolinario, F. Vernay, P. M. S. Monteiro, F. Albertini, F. Casoli, H. Kachkachi and D. S. Schmool, Phys. Rev. B 82, 104433 (2010).

    Article  ADS  Google Scholar 

  10. A. Breitling, T. Bubalt and D. Goll, Phys. Status Solidi RRL 3, 130 (2009).

    Article  Google Scholar 

  11. X. Rui, J. E. Shield, Z. Sun, Y. Xu, D. J. Sellmyer, Z. Liu and D. J. Miller, J. Magn. Magn. Mater. 1 76 (2005).

    Google Scholar 

  12. J. P. Liu, C. P. Luo, Y. Liu and D. L. Sellmyer, Appl. Phys. Lett. 72, 483 (1998).

    Article  ADS  Google Scholar 

  13. F. Casoli, L. Nasi, F. Albertini, S. Fabbrici, C. Bocchi, F. Germini, P. Luches, A. Rota and S. Valeri, J. Appl. Phys. 103, 043912 (2008).

    Article  ADS  Google Scholar 

  14. D. Kim and J. Hong, J. Magn. Magn. Mater. 321, 1821 (2009).

    Article  ADS  Google Scholar 

  15. D. Kim and J. Hong, Surf. Sci. 606, 1960 (2012).

    Article  ADS  Google Scholar 

  16. E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

    Article  ADS  Google Scholar 

  17. M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).

    Article  ADS  Google Scholar 

  18. M. Weinert, J. Math. Phys. 22, 2433 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  19. D. D. Koelling and B. N. Hamon, J. Phys. C: Solid State Phys. 10, 3107 (1997).

    Article  ADS  Google Scholar 

  20. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  21. A. Dannenberg, M. E. Gruner, A. Hucht and P. Entel, Phys. Rev. 80, 245438 (2009).

    Google Scholar 

  22. X. D. Wang, R. Q. Wu, D. S. Wang and A. J. Freeman, Phys. Rev. B 54, 61 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisang Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Hashmi, A. & Hong, J. Energy product and coercivity of a rare-earth-free multilayer FeCo/FePt exchange spring magnet. Journal of the Korean Physical Society 62, 918–923 (2013). https://doi.org/10.3938/jkps.62.918

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.918

Keywords

Navigation