Research article Special Issues

Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays

  • Received: 07 October 2022 Revised: 02 December 2022 Accepted: 21 December 2022 Published: 09 January 2023
  • In this study, we construct two explicit finite difference methods (EFDMs) for nonlinear wave equation with delay. The first EFDM is developed by modifying the standard second-order EFDM used to solve linear second-order wave equations, of which stable requirement is accepted. The second EFDM is devised for nonlinear wave equation with delay by extending the famous Du Fort-Frankel scheme initially applied to solve linear parabolic equation. The error estimations of these two EFDMs are given by applying the discrete energy methods. Besides, Richardson extrapolation methods (REMs), which are used along with them, are established to improve the convergent rates of the numerical solutions. Finally, numerical results confirm the accuracies of the algorithms and the correctness of theoretical findings. There are few studies on numerical solutions of wave equations with delay by Du Fort-Frankel-type scheme. Therefore, a main contribution of this study is that Du Fort-Frankel scheme and a corresponding new REM are constructed to solve nonlinear wave equation with delay, efficiently.

    Citation: Dingwen Deng, Jingliang Chen. Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays[J]. Networks and Heterogeneous Media, 2023, 18(1): 412-443. doi: 10.3934/nhm.2023017

    Related Papers:

  • In this study, we construct two explicit finite difference methods (EFDMs) for nonlinear wave equation with delay. The first EFDM is developed by modifying the standard second-order EFDM used to solve linear second-order wave equations, of which stable requirement is accepted. The second EFDM is devised for nonlinear wave equation with delay by extending the famous Du Fort-Frankel scheme initially applied to solve linear parabolic equation. The error estimations of these two EFDMs are given by applying the discrete energy methods. Besides, Richardson extrapolation methods (REMs), which are used along with them, are established to improve the convergent rates of the numerical solutions. Finally, numerical results confirm the accuracies of the algorithms and the correctness of theoretical findings. There are few studies on numerical solutions of wave equations with delay by Du Fort-Frankel-type scheme. Therefore, a main contribution of this study is that Du Fort-Frankel scheme and a corresponding new REM are constructed to solve nonlinear wave equation with delay, efficiently.



    加载中


    [1] S. A. Messaoudi, A. Fareh, N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and a strong delay, J. Math. Phys., 57 (2016), 111501. https://doi.org/10.1063/1.4966551 doi: 10.1063/1.4966551
    [2] G. Liu, H. Yue, H. Zhang, Long time behavior for a wave equation with time delay, Taiwan. J. Math., 21 (2017), 107–129. https://doi.org/10.1353/jqr.2017.0005 doi: 10.1353/jqr.2017.0005
    [3] M. Kafini, S. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., 99 (2020), 530–547. https://doi.org/10.1080/00036811.2018.1504029 doi: 10.1080/00036811.2018.1504029
    [4] K. Zhu, Y. Xie, F. Zhou, Pullback attractors for a damped semilinear wave equation with delays, Acta Math. Sin., 34 (2018), 1131–1150. https://doi.org/10.1007/s10114-018-7420-3 doi: 10.1007/s10114-018-7420-3
    [5] Y. Wang, Pullback attractors for a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003. https://doi.org/10.1142/S0219493715500033 doi: 10.1142/S0219493715500033
    [6] M. Jornet, Exact solution to a multidimensional wave equation with delay, Appl. Math. Comput., 409 (2021), 126421. https://doi.org/10.1016/j.amc.2021.126421 doi: 10.1016/j.amc.2021.126421
    [7] F. Rodríguez, M. Roales, A. Martín, Exact solutions and numerical approximations of mixed problems for the wave equation with delay, Appl. Math. Comput., 219 (2012), 3178–3186. https://doi.org/10.1016/j.amc.2012.09.050 doi: 10.1016/j.amc.2012.09.050
    [8] J. Z. Lobo, Y. S. Valaulikar, Group analysis of the one dimensional wave equation with delay, Appl. Math. Comput., 378 (2020), 125193. https://doi.org/10.1016/j.amc.2020.125193 doi: 10.1016/j.amc.2020.125193
    [9] J. K. Hale, Theory of Functional Differential Equations, New York: Spring-Verlag, 1977.
    [10] J. Wu, Theory and applications of partial functional differential equations, Berlin: Springer Science & Business Media, 1996.
    [11] M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941–956. https://doi.org/10.1182/blood.V51.5.941.941 doi: 10.1182/blood.V51.5.941.941
    [12] Z. Ling, Z. Lin, Traveling wavefront in a Hematopoiesis model with time delay, Appl Math. Lett., 23 (2010), 426–431. https://doi.org/10.1016/j.aml.2009.11.011 doi: 10.1016/j.aml.2009.11.011
    [13] L. Berezansky, E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 51 (2006), 1–16.
    [14] W. S. C. Gurney, S. P. Blythe, R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17–21. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0
    [15] J. W. H. So, X. Zou., Traveling waves for the diffusive Nicholson's blowflies equation, Appl. Math. Comput., 122 (2001), 385–392. https://doi.org/10.1016/S0096-3003(00)00055-2 doi: 10.1016/S0096-3003(00)00055-2
    [16] M. R. S. Kulenovic, G. Ladas, Y. G. Sficas, Global attractivity in Nicholson's blowflies, Appl. Anal., 43 (1992), 109–124. https://doi.org/10.1016/0045-8732(92)90107-W doi: 10.1016/0045-8732(92)90107-W
    [17] G. E. Hutchinson, Circular causal systems in ecology, Ann. NY Acad. Sci, 50 (1948), 221–246. https://doi.org/10.1111/j.1749-6632.1948.tb39854.x doi: 10.1111/j.1749-6632.1948.tb39854.x
    [18] A. Yu. Kolesov, E. F. Mishchenkob, N. Kh. Rozov, A modification of Hutchinson's equation, Comp. Math. Math. Phys., 50 (2010), 1990–2002. https://doi.org/10.1134/S0965542510120031 doi: 10.1134/S0965542510120031
    [19] Y. N. Kyrychko, S. J. Hogan, On the use of delay equations in engineering applications, J VIB CONTROL, 16 (2010), 943–960. https://doi.org/10.1134/S0965542510120031 doi: 10.1134/S0965542510120031
    [20] Q. He, L. Kang, D. J. Evans, Convergence and stability of the finite difference scheme for nonlinear parabolic systems with time delay, Numer. Algor., 16 (1997), 129–153. https://doi.org/10.1023/A:1019130928606 doi: 10.1023/A:1019130928606
    [21] Z. Sun, Z. Zhang, A linearized compact difference scheme for a class of nonlinear delay partial differential equations, Appl. Math. Model., 37 (2013), 742–752. https://doi.org/10.1016/j.apm.2012.02.036 doi: 10.1016/j.apm.2012.02.036
    [22] D. Li, C. Zhang, J. Wen, A note on compact finite difference method for reaction–diffusion equations with delay, Appl. Math. Model., 39 (2015), 1749–1754. https://doi.org/10.1016/j.apm.2014.09.028 doi: 10.1016/j.apm.2014.09.028
    [23] C. Tang, C. Zhang, A fully discrete $\theta$-method for solving semi-linear reaction–diffusion equations with time-variable delay, Math. Comput. Simulat., 179 (2021), 48–56. https://doi.org/10.1016/j.matcom.2020.07.019 doi: 10.1016/j.matcom.2020.07.019
    [24] A. V. Lekomtsev, V. G. Pimenov, Convergence of the alternating direction method for the numerical solution of a heat conduction equation with delay, Proc. Steklov Inst. Math., 272 (2011), 101–118.
    [25] Q. Zhang, C. Zhang, L. Wang, The compact and Crank–Nicolson ADI schemes for two-dimensional semilinear multidelay parabolic equations, J. Comput. Appl. Math., 306 (2016), 217–230.
    [26] D. Deng, The study of a fourth-order multistep ADI method applied to nonlinear delay reaction-diffusion equations, Appl. Numer. Math., 96 (2015), 118–133. https://doi.org/10.1016/j.apnum.2015.05.007 doi: 10.1016/j.apnum.2015.05.007
    [27] Q. Zhang, D. Li, C. Zhang, D. Xu, Multistep finite difference schemes for the variable coefficient delay parabolic equations, J. Differ. Equ. Appl., 22 (2016), 745–765. https://doi.org/10.1080/10236198.2016.1142539 doi: 10.1080/10236198.2016.1142539
    [28] J. Xie, Z. Zhang, The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients, Comput. Math. Appl., 75 (2018), 3558–3570.
    [29] D. Li, C. Zhang, H. Qin, LDG method for reaction–diffusion dynamical systems with time delay, Appl. Math. Comput., 217 (2011), 9173–9181. https://doi.org/10.1016/j.amc.2011.03.153 doi: 10.1016/j.amc.2011.03.153
    [30] Z. Jackiewicz, B. Zubik-Kowal, Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations, Appl. Numer. Math., 56 (2006), 433–443. https://doi.org/10.1016/j.apnum.2005.04.021 doi: 10.1016/j.apnum.2005.04.021
    [31] R. Burger, R. Ruiz-Baier, C. Tian, Stability analysis and finite volume element discretization for delay-driven spatio-temporal patterns in a predator–prey model, Math. Comput. Simulat., 132 (2017), 28–52. https://doi.org/10.1016/S0737-0806(17)30375-1 doi: 10.1016/S0737-0806(17)30375-1
    [32] D. Deng, J. Xie, Y. Jiang and D. Liang, A second-order box solver for nonlinear delayed convection-diffusion equations with Neumann boundary conditions, Int. J. Comput Math., 96 (2019), 1879–1898.
    [33] Q. Zhang, C. Zhang, A new linearized compact multisplitting scheme for the nonlinear convection-reaction-diffusion equations with delay, Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 3278–3288. https://doi.org/10.1016/j.cnsns.2013.05.018
    [34] B. Liu, C. Zhang, A spectral Galerkin method for nonlinear delay convection-diffusion-reaction equations, Comput. Math. Appl., 69 (2015), 709–724. https://doi.org/10.1016/j.camwa.2015.02.027 doi: 10.1016/j.camwa.2015.02.027
    [35] M. A. Castro, F. Rodríguez, J. Cabrera, J. A. Martín, Difference schemes for time-dependent heat conduction models with delay, Int. J. Comput. Math., 91 (2014), 53–61.
    [36] Q. Zhang, C. Zhang, A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations, Appl. Math. Lett., 26 (2013), 306–312.
    [37] C. Zhang, W. Wang, B. Liu, T. Qin, Multi-domain Legendre spectral collocation method for nonlinear neutral equations with piecewise continuous argument, Int. J. Comput. Math., 95 (2018), 2419–2432.
    [38] H. Liang, Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays, Appl. Math. Comput., 264 (2015), 160–178. https://doi.org/10.1016/j.amc.2015.04.104 doi: 10.1016/j.amc.2015.04.104
    [39] C. Zhang, Z. Tan, Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations, Commun. Nonlinear Sci. Numer. Simulat., 91 (2020), 105461. https://doi.org/10.1016/j.cnsns.2020.105461 doi: 10.1016/j.cnsns.2020.105461
    [40] A. B. Chiyaneh, H. Duru, On adaptive mesh for the initial boundary value singularly perturbed delay Sobolev problems, Numer. Meth. Part. D. E., 36 (2019), 228–248. https://doi.org/10.1002/num.22417 doi: 10.1002/num.22417
    [41] A. B. Chiyaneh, H. Duru, Uniform difference method for singularly pertubated delay Sobolev problems, Quaest. Math., 43 (2020), 1713–1736. https://doi.org/10.2989/16073606.2019.1653395 doi: 10.2989/16073606.2019.1653395
    [42] Q. Zhang, C. Zhang, D. Deng, A compact difference scheme and Richardson extrapolation algorithm for solving a class of the nonlinear delay hyperbolic partial differential equations (in Chinese), J. Numer. Meth. Comput. Appl., 34 (2013), 167–176.
    [43] Q. Zhang C. Zhang, D. Deng, Compact alternating direction implicit method to solve two-dimensional nonlinear delay hyperbolic differential equations, Int. J. Comput. Math., 91 (2014), 964–982. https://doi.org/10.1080/00207160.2013.810216 doi: 10.1080/00207160.2013.810216
    [44] E. C. Du Fort, S. P. Frankel, Conditions in the numerical treatment of parabolic differential equations, Math Tables Other Aids Comput., 7 (1953), 135–152. https://doi.org/10.2307/2002754 doi: 10.2307/2002754
    [45] Z. Sun, Numerical methods for partial differential equations (In Chinese), Beijing: Science Press, 2012.
    [46] D. Deng, D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188–209. https://doi.org/10.1016/j.amc.2018.02.010 doi: 10.1016/j.amc.2018.02.010
    [47] D. Deng, Q. Wang, A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations, Commun. Nonlinear Sci. Numer. Simulat., 117 (2023), 106916. https://doi.org/10.1016/j.cnsns.2022.106916 doi: 10.1016/j.cnsns.2022.106916
    [48] D. Deng, Z. Li, High-order structure-preserving Du Fort-Frankel schemes and their analyses for the nonlinear Schrödinger equation with wave operator, J. Comput. Appl. Math., 417 (2023), 114616. https://doi.org/10.1016/j.cam.2022.114616 doi: 10.1016/j.cam.2022.114616
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(968) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog