Research article Special Issues

On the construction of stable periodic solutions for the dynamical motion of AC machines

  • Received: 19 September 2022 Revised: 14 January 2023 Accepted: 19 January 2023 Published: 09 February 2023
  • MSC : 34A30, 34C25, 34D20, 70K60

  • This article discusses the stability of periodic responses for the dynamical motion of AC machines from the perspective of Lyapunov function approach. The dynamical motion of AC machines is prototypically modeled as an equivalent linear RLC series circuit with time-variant inductance represented by a linear differential equation with periodic coefficients. Based on the deduced stability conditions, some special identities among the equivalent circuit parameters to ensure the stability of responses and their periodic structures are concluded. Through these conditions, the periodic structure of responses is obtained by using the method of strained parameters. Through a comparison with the experimental results from the specialized practical literatures, a strong agreement with the obtained analytical results is achieved. In addition, from a practical point of views, some future points within the discussion are raised to improve the mathematical modeling of AC machines to obtain a better model and simulation.

    Citation: Mohamed El-Borhamy, Essam Eddin M. Rashad, Arafa A. Nasef, Ismail Sobhy, Samah M. Elkholy. On the construction of stable periodic solutions for the dynamical motion of AC machines[J]. AIMS Mathematics, 2023, 8(4): 8902-8927. doi: 10.3934/math.2023446

    Related Papers:

  • This article discusses the stability of periodic responses for the dynamical motion of AC machines from the perspective of Lyapunov function approach. The dynamical motion of AC machines is prototypically modeled as an equivalent linear RLC series circuit with time-variant inductance represented by a linear differential equation with periodic coefficients. Based on the deduced stability conditions, some special identities among the equivalent circuit parameters to ensure the stability of responses and their periodic structures are concluded. Through these conditions, the periodic structure of responses is obtained by using the method of strained parameters. Through a comparison with the experimental results from the specialized practical literatures, a strong agreement with the obtained analytical results is achieved. In addition, from a practical point of views, some future points within the discussion are raised to improve the mathematical modeling of AC machines to obtain a better model and simulation.



    加载中


    [1] J. D. Gao, X. H. Wang, L. Z. Zhang, AC Machine Systems: Mathematical Model and Parameters, Analysis, and System Performance, Berlin, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-01153-5
    [2] A. S. Mostafa, A. L. Mohamadein, E. M. Rashad, Application of Floquet's theory to the analysis of series-connected wound-rotor self-excited synchronous generator, IEEE Trans. Energy Convers., 8 (1993), 369–376. http://doi.org/10.1109/60.257047 doi: 10.1109/60.257047
    [3] A. S. Mostafa, A. L. Mohamadein, E. M. Rashad, Analysis of series-connected wound-rotor self-excited induction generator, IEE Proc. B Electr. Power Appl., 140 (1993), 329–336. http://doi.org/10.1049/ip-b.1993.0041 doi: 10.1049/ip-b.1993.0041
    [4] M. El-Borhamy, Chaos transition of the generalized fractional duffing oscillator with a generalized time delayed position feedback, Nonlinear Dyn., 111 (2020), 2471–2487. https://doi.org/10.1007/s11071-020-05840-y doi: 10.1007/s11071-020-05840-y
    [5] M. El-Borhamy, Z. El-Sheikh, M. E. Ali, Modeling and dynamic analysis for a motion of mounted-based axisymmetric rigid body under self-excited vibrations in an attractive Newtonian field, Math. Probl. Eng., 2022, 4329906. https://doi.org/10.1155/2022/4329906
    [6] M. El-Borhamy, T. Medhat, M. E. Ali, Chaos prediction in fractional delayed energy-based models of capital accumulation, Complexity, 2021, 8751963. https://doi.org/10.1155/2020/8751963
    [7] A. Y. Leung, Z. Guo, H. X. Yang, Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2900–2915. https://doi.org/10.1016/j.cnsns.2013.02.013 doi: 10.1016/j.cnsns.2013.02.013
    [8] A. Y. Leung, H. X. Yang, P. Zhu, Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1142–1155. https://doi.org/10.1016/j.cnsns.2013.08.020 doi: 10.1016/j.cnsns.2013.08.020
    [9] Y. Yu, Z. Zhang, Q. Bi, Multistability and fast-slow analysis for van der Pol-Duffing oscillator with varying exponential delay feedback factor, Appl. Math. Model., 57 (2018), 448–458. https://doi.org/10.1016/j.apm.2018.01.010 doi: 10.1016/j.apm.2018.01.010
    [10] S. Wen, Y. Shen, S. Yang, J. Wang, Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback, Chaos Soliton Fract., 94 (2017), 54–62. https://doi.org/10.1016/j.chaos.2016.11.008 doi: 10.1016/j.chaos.2016.11.008
    [11] É. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl., 13 (1868), 137–203.
    [12] D. Frenkel, R. Portugal, Algebraic methods to compute Mathieu functions, J. Phys., 34 (2001), 3541–3551. http://doi.org/10.1088/0305-4470/34/17/302 doi: 10.1088/0305-4470/34/17/302
    [13] M. Gadella, H. Giacomini, L. P. Lara, Periodic analytic approximate solutions for the Mathieu equation, Appl. Math. Comput., 271 (2015), 436–445. http://doi.org/10.1016/j.amc.2015.09.018 doi: 10.1016/j.amc.2015.09.018
    [14] I. Kovacic, R. Rand, S. M. Sah, Mathieu's equation and its generalizations: Overview of stability charts and their features, Appl. Mech. Rev., 70 (2018), 020802. http://doi.org/10.1115/1.4039144 doi: 10.1115/1.4039144
    [15] J. A. Richards, Analysis of Periodically Time-Varying Systems, Berlin, Heidelberg: Springer, 1983. https://doi.org/10.1007/978-3-642-81873-8
    [16] S. A. Wilkinson, N. Vogt, D. S. Golubev, J. H. Cole, Approximate solutions to Mathieu's equation, Physica E Low Dimens., 100 (2018), 24–30. http://doi.org/10.1016/j.physe.2018.02.019 doi: 10.1016/j.physe.2018.02.019
    [17] D. Younesian, E. Esmailzadeh, R. Sedaghati, Existence of periodic solutions for the generalized form of Mathieu equation, Nonlinear Dyn., 39 (2005), 335–348. http://doi.org/10.1007/s11071-005-4338-y doi: 10.1007/s11071-005-4338-y
    [18] D. Younesian, E. Esmailzadeh, R. Sedaghati, Asymptotic solutions and stability analysis for generalized non-homogeneous Mathieu equation, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 58–71. http://doi.org/10.1016/j.cnsns.2006.01.005 doi: 10.1016/j.cnsns.2006.01.005
    [19] W. S. Loud, Stability regions for Hill's equation, J. Differ. Equ., 19 (1975), 226–241. https://doi.org/10.1016/0022-0396(75)90003-0 doi: 10.1016/0022-0396(75)90003-0
    [20] A. Parra-Hinojosa, J. C. Gutierrez-Vega, Fractional Ince equation with a Riemann-Liouville fractional derivative, Appl. Math. Comput., 219 (2013), 10695–10705. https://doi.org/10.1016/j.amc.2013.04.044 doi: 10.1016/j.amc.2013.04.044
    [21] F. J. Poulin, G. R. Flierl, J. Pedlosky, Parametric instability in oscillatory shear flows, J. Fluid Mechanics, 481 (2003), 329–353. https://doi.org/10.1017/S0022112003004051 doi: 10.1017/S0022112003004051
    [22] R. H. Rand, S. M. Sah, M. K. Suchorsky, Fractional Mathieu equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3254–3262. https://doi.org/10.1016/j.cnsns.2009.12.009 doi: 10.1016/j.cnsns.2009.12.009
    [23] M. El-Borhamy, E. M. Rashad, I. Sobhy, Floquet analysis of linear dynamic RLC circuits, Open Phys., 18 (2020), 264–277. http://doi.org/10.1515/phys-2020-0136 doi: 10.1515/phys-2020-0136
    [24] M. El-Borhamy, E. M. Rashad, I. Sobhy, M. El-sayed, Modeling and semi-analytic stability analysis for dynamics of AC machines, Mathematics, 9 (2021), 644. https://doi.org/10.3390/math9060644 doi: 10.3390/math9060644
    [25] M. Batista, Elfun18-A collection of MATLAB functions for the computation of elliptic integrals and Jacobian elliptic functions of real arguments, SoftwareX, 10 (2019), 100245. https://doi.org/10.1016/j.softx.2019.100245 doi: 10.1016/j.softx.2019.100245
    [26] M. El-Borhamy, On the existence of new integrable cases for Euler-Poisson equations in Newtonian fields, Alex. Eng. J., 58 (2019), 733–744. https://doi.org/10.1016/j.aej.2019.06.004 doi: 10.1016/j.aej.2019.06.004
    [27] D. Zwillinger, Handbook of Integration, Boca Raton: CRC Press, 1992.
    [28] C. Chicone, Ordinary Differential Equations with Applications, New York: Springer, 2006. https://doi.org/10.1007/b97645
    [29] A. A. Martynyuk, Stability by Liapunov's Matrix Function Method with Applications, Boca Raton: CRC Press, 1998.
    [30] D. R. Merkin, Introduction to the Theory of Stability, New York: Springer, 1997.
    [31] S. K. Nikravesh, Nonlinear Systems Stability Analysis: Lyapunov-Based Approach, Boca Raton: CRC Press, 2013.
    [32] M. Onitsuka, Uniform asymptotic stability for damped linear oscillators with variable parameters, Appl. Math. Comput., 218 (2011), 1436–1442. https://doi.org/10.1016/j.amc.2011.06.025 doi: 10.1016/j.amc.2011.06.025
    [33] A. O. Ignatyev, Stability of a linear oscillator with variable parameters, Electron. J. Differ. Eq., 17 (1997), 1–6.
    [34] L. Duc, A. Ilchmann, S. Siegmund, P. Taraba, On stability of linear time-varying second-order differential equations, Q. Appl. Math., 64 (2006), 137–151.
    [35] M. Grau, D. Peralta-Salas, A note on linear differential equations with periodic coefficients, Nonlinear Anal. Theory Methods Appl., 71 (2009), 3197–3202. https://doi.org/10.1016/j.na.2009.01.199 doi: 10.1016/j.na.2009.01.199
    [36] J. H. Hale, Ordinary Differential Equations, Dover Publications, 2009.
    [37] C. S. Liu, Y. W. Chen, A simplified Lindstedt-Poincare method for saving computational cost to determine higher order nonlinear free vibrations, Mathematics, 9 (2021), 3070. https://doi.org/10.3390/math9233070 doi: 10.3390/math9233070
    [38] A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, 2011.
    [39] B. K. Shivamoggi, Perturbation Methods for Differential Equations, Boston: Birkhäuser, 2012.
    [40] M. El-Borhamy, N. Mosalam, On the existence of periodic solution and the transition to chaos of Rayleigh-Duffing equation with application of gyro dynamic, Appl. Math. Nonl. Sci., 5 (2020), 43–58. http://doi.org/10.2478/amns.2020.1.00010 doi: 10.2478/amns.2020.1.00010
    [41] E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9781139172189
    [42] N. Karjanto, On the method of strained parameters for a KdV type of equation with exact dispersion property, IMA J. Appl. Math., 80 (2015), 893–905. https://doi.org/10.1093/imamat/hxu020 doi: 10.1093/imamat/hxu020
    [43] D. P. Mason, On the method of strained parameters and the method of averaging, Q. Appl. Math., 42 (1984), 77–85.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(818) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog