Research article

Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet

  • Received: 24 July 2022 Revised: 28 August 2022 Accepted: 06 September 2022 Published: 20 September 2022
  • MSC : 76A05, 76S99, 76W99, 80M25, 93A30

  • In this paper, the steady flow of an incompressible hybrid Casson nanofluid over a vertical permeable exponential stretching sheet is considered. The influence of the induced magnetic field is investigated. The influence of heat production and nonlinear radiation on slip effects is studied. Typically, three hybrid nanofluidic models are presented in this paper, namely: Xue, Yamada-Ota, and Tiwari Das. A study of a single-walled carbon nanotube and a multi-walled carbon nanotube with base fluid water is also provided. The governing equations are developed under flow assumptions in the form of partial differential equations by using boundary layer approximations. Using the appropriate transformations, partial differential equations are converted into ordinary differential equations. The ordinary differential equations are solved by the fifth-order Runge-Kutta-Fehlberg approach. Impacts concerning physical parameters are revealed by graphs and numerical values through tables. Temperature profile increases as concentration of solid nanoparticles increases. Because the thermal conductivity of the fluid is enhanced due to an increment in solid nanoparticles, which enhanced the temperature of the magneto-Casson hybrid nanofluid. The skin friction achieved higher values in the Yamada-Ota model of hybrid nanofluid as compared to the Xue model and Tiwari Das model. The results of this study show the Yamada-Ota model achieved a higher heat transfer rate than the Xue and Tiwari Das models of hybrid nanofluid.

    Citation: Taqi A. M. Shatnawi, Nadeem Abbas, Wasfi Shatanawi. Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet[J]. AIMS Mathematics, 2022, 7(12): 20545-20564. doi: 10.3934/math.20221126

    Related Papers:

  • In this paper, the steady flow of an incompressible hybrid Casson nanofluid over a vertical permeable exponential stretching sheet is considered. The influence of the induced magnetic field is investigated. The influence of heat production and nonlinear radiation on slip effects is studied. Typically, three hybrid nanofluidic models are presented in this paper, namely: Xue, Yamada-Ota, and Tiwari Das. A study of a single-walled carbon nanotube and a multi-walled carbon nanotube with base fluid water is also provided. The governing equations are developed under flow assumptions in the form of partial differential equations by using boundary layer approximations. Using the appropriate transformations, partial differential equations are converted into ordinary differential equations. The ordinary differential equations are solved by the fifth-order Runge-Kutta-Fehlberg approach. Impacts concerning physical parameters are revealed by graphs and numerical values through tables. Temperature profile increases as concentration of solid nanoparticles increases. Because the thermal conductivity of the fluid is enhanced due to an increment in solid nanoparticles, which enhanced the temperature of the magneto-Casson hybrid nanofluid. The skin friction achieved higher values in the Yamada-Ota model of hybrid nanofluid as compared to the Xue model and Tiwari Das model. The results of this study show the Yamada-Ota model achieved a higher heat transfer rate than the Xue and Tiwari Das models of hybrid nanofluid.



    加载中


    [1] M. Hamad, M. Bashir, Boundary-layer flow and heat transfer of a power-law non-Newtonian nanofluid over a vertical stretching sheet, World Applied Sciences Journal, 7 (2009), 172-178.
    [2] N. Bachok, A. Ishak, I. Pop, Boundary-layer flow of nanofluids over a moving surface in a flowing fluid, Int. J. Therm. Sci., 49 (2010), 1663-1668. https://doi.org/10.1016/j.ijthermalsci.2010.01.026 doi: 10.1016/j.ijthermalsci.2010.01.026
    [3] S. Nadeem, C. Lee, Boundary layer flow of nanofluid over an exponentially stretching surface, Nanoscale Res. Lett., 7 (2012), 94. https://doi.org/10.1186/1556-276X-7-94 doi: 10.1186/1556-276X-7-94
    [4] O. Anwar Bég, M. Khan, I. Karim, Md. Alam, M. Ferdows, Explicit numerical study of unsteady hydromagnetic mixed convective nanofluid flow from an exponentially stretching sheet in porous media, Appl. Nanosci., 4 (2014), 943-957. https://doi.org/10.1007/s13204-013-0275-0 doi: 10.1007/s13204-013-0275-0
    [5] G. Ramesh, Darcy-Forchheimer flow of Casson nanofluid with heat source/sink: a three-dimensional study, In Heat and mass transfer-advances in modelling and experimental study for industrial applications, London: Intech Open, 2018, 43-62. https://doi.org/10.5772/intechopen.74170
    [6] M. Khan, S. Nadeem, A comparative study between linear and exponential stretching sheet with double stratification of a rotating Maxwell nanofluid flow, Surf. Interfaces, 22 (2021), 100886. https://doi.org/10.1016/j.surfin.2020.100886 doi: 10.1016/j.surfin.2020.100886
    [7] M. Khan, R. Ali, H. Ahmad, N. Abbas, A. Mousa, A. Galal, Thermal and chemically reactive features of Casson nanofluid flow with thermophoresis and Brownian effect over an exponentially stretching surface, P. I. Mech. Eng. E-J. Pro., in press. https://doi.org/10.1177/09544089211064465
    [8] G. Ramesh, G. Roopa, A. Rauf, S. Shehzad, F. Abbasi, Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects, Int. Commun. Heat Mass, 126 (2020), 105470. https://doi.org/10.1016/j.icheatmasstransfer.2021.105470 doi: 10.1016/j.icheatmasstransfer.2021.105470
    [9] F. Wang, S. Ahmad, Q. Al Mdallal, M. Alammari, M. Khan, A. Rehman, Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition, Sci. Rep., 12 (2022), 2220. https://doi.org/10.1038/s41598-022-04948-y doi: 10.1038/s41598-022-04948-y
    [10] L. Ali, B. Ali, X. Liu, T. Iqbal, R. Zulqarnain, M. Javid, A comparative study of unsteady MHD Falkner-Skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy, Chinese J. Phys., 77 (2022), 1625-1638. https://doi.org/10.1016/j.cjph.2021.10.045 doi: 10.1016/j.cjph.2021.10.045
    [11] S. Anjali Devi, S. Suriya Uma Devi, Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlin. Sci. Num., 17 (2016), 249-257. https://doi.org/10.1515/ijnsns-2016-0037 doi: 10.1515/ijnsns-2016-0037
    [12] S. Nadeem, N. Abbas, A. Khan, Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder, Results Phys., 8 (2018), 829-835. https://doi.org/10.1016/j.rinp.2018.01.024 doi: 10.1016/j.rinp.2018.01.024
    [13] S. Nadeem, N. Abbas, M. Malik, Inspection of hybrid based nanofluid flow over a curved surface, Comput. Meth. Prog. Bio., 189 (2020), 105193. https://doi.org/10.1016/j.cmpb.2019.105193 doi: 10.1016/j.cmpb.2019.105193
    [14] N. Abbas, S. Nadeem, A. Saleemc, M. Malik, A. Issakhov, F. Alharbi, Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder, Chinese J. Phys., 69 (2021), 109-117. https://doi.org/10.1016/j.cjph.2020.11.019 doi: 10.1016/j.cjph.2020.11.019
    [15] A. Jyothi, R. Varun Kumar, J. Madhukesh, B. Prasannakumara, G. Ramesh, Squeezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle deposition, Heat Transf., 50 (2021), 7139-7156. https://doi.org/10.1002/htj.22221 doi: 10.1002/htj.22221
    [16] V. Puneeth, S. Manjunatha, J. Madhukesh, G. Ramesh, Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: a modified Buongiorno's model aspects, Chaos Soliton. Fract., 152 (2021), 111428. https://doi.org/10.1016/j.chaos.2021.111428 doi: 10.1016/j.chaos.2021.111428
    [17] P. Li, F. Duraihem. A. Awan, A. Al-Zubaidi, N. Abbas, D. Ahmad, Heat transfer of hybrid nanomaterials base Maxwell micropolar fluid flow over an exponentially stretching surface, Nanomaterials, 12 (2022), 1207. https://doi.org/10.3390/nano12071207 doi: 10.3390/nano12071207
    [18] F. Ali, R. Nazar, N. Arifin, I. Pop, MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field, Heat Mass Transfer, 47 (2011), 155-162. https://doi.org/10.1007/s00231-010-0693-4 doi: 10.1007/s00231-010-0693-4
    [19] G. Thammanna, K. Kumar, B. Gireesha, G. Ramesh, B. Prasannakumara, Three dimensional MHD flow of couple stress Casson fluid past an unsteady stretching surface with chemical reaction, Results Phys., 7 (2017), 4104-4110. https://doi.org/10.1016/j.rinp.2017.10.016 doi: 10.1016/j.rinp.2017.10.016
    [20] M. Junoh, F. Ali, N. Arifin, N. Bachok, I. Pop, MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid with induced magnetic field, Int. J. Numer. Method. H., 30 (2020), 1345-1364. https://doi.org/10.1108/HFF-06-2019-0500 doi: 10.1108/HFF-06-2019-0500
    [21] A. Al-Hanaya, F. Sajid, N. Abbas, S. Nadeem, Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field, Sci. Rep., 10 (2020), 5488. https://doi.org/10.1038/s41598-020-65278-5 doi: 10.1038/s41598-020-65278-5
    [22] S. Alharbi, Impact of hybrid nanoparticles on transport mechanism in magnetohydrodynamic fluid flow exposed to induced magnetic field, Ain Shams Eng. J., 12 (2021), 995-1000. https://doi.org/10.1016/j.asej.2020.04.013 doi: 10.1016/j.asej.2020.04.013
    [23] M. Hafeez, M. Krawczuk, K. Nisar, W. Jamshed, A. Pasha, A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field, Int. Commun. Heat Mass, 135 (2022), 106074. https://doi.org/10.1016/j.icheatmasstransfer.2022.106074 doi: 10.1016/j.icheatmasstransfer.2022.106074
    [24] L. Ali, B. Ali, M. Ghori, Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach, Comput. Math. Appl., 109 (2022), 260-269. https://doi.org/10.1016/j.camwa.2022.01.009 doi: 10.1016/j.camwa.2022.01.009
    [25] L. Ali, B. Ali, X. Liu, S. Ahmed, M. Shah, Analysis of bio-convective MHD Blasius and Sakiadis flow with Cattaneo-Christov heat flux model and chemical reaction, Chinese J. Phys., 77 (2022), 1963-1975. https://doi.org/10.1016/j.cjph.2021.12.008 doi: 10.1016/j.cjph.2021.12.008
    [26] M. Anwar, H. Firdous, A. Al Zubaidi, N. Abbas, S. Nadeem, Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet, Prog. React. Kinet. Mec., in press. https://doi.org/10.1177/14686783211072712
    [27] A. Alghamdi, S. Gala, M. Ragusa, Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components, Sib. Electron. Math. Re., 19 (2022), 309-315.
    [28] A. Alghamdi, S. Gala, M. Ragusa, Beale-Kato-Majda's criterion for magneto-hydrodynamic equations with zero viscosity, Novi Sad J. Math, 50 (2020), 89-97. https://doi.org/10.30755/NSJOM.09142 doi: 10.30755/NSJOM.09142
    [29] G. Ramesh, B. Prasannakumara, B. Gireesha, M. Rashidi, Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation, J. Appl. Fluid Mech., 9 (2016), 1115-1022. https://doi.org/10.18869/ACADPUB.JAFM.68.228.24584 doi: 10.18869/ACADPUB.JAFM.68.228.24584
    [30] W. Khan, M. Awais, N. Parveen, A. Ali, S. Awan, M. Malik, et al., Analytical assessment of (Al2O3-Ag/H2O) hybrid nanofluid influenced by induced magnetic field for second law analysis with mixed convection, viscous dissipation and heat generation, Coatings, 11 (2021), 498. https://doi.org/10.3390/coatings11050498 doi: 10.3390/coatings11050498
    [31] N. Abbas, W. Shatanawi, K. Abodayeh, Computational analysis of MHD nonlinear radiation Casson hybrid nanofluid flow at vertical stretching sheet, Symmetry, 14 (2020), 1494. https://doi.org/10.3390/sym14071494 doi: 10.3390/sym14071494
    [32] L. Ali, X. Liu, B. Ali, S. Abdal, R. Zulqarnain, Finite element analysis of unsteady MHD Blasius and Sakiadis flow with radiation and thermal convection using Cattaneo-Christov heat flux model, Phys. Scr., 96 (2021), 125219.
    [33] N. Zainal, R. Nazar, K. Naganthran, I. Pop, Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid, Eng. Sci. Technol., 24 (2021), 1201-1210. https://doi.org/10.1016/j.jestch.2021.01.018 doi: 10.1016/j.jestch.2021.01.018
    [34] N. Bachok, A. Ishak, I. Pop, The boundary layers of an unsteady stagnation-point flow in a nanofluid, Int. J. Heat Mass, 55 (2012), 6499-6505. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.050 doi: 10.1016/j.ijheatmasstransfer.2012.06.050
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1536) PDF downloads(122) Cited by(9)

Article outline

Figures and Tables

Figures(13)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog