\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular fold with real noise

Abstract Related Papers Cited by
  • We study the effect of small real noise on the jump behavior near a singular fold point, which is an important step in understanding the burst-spike behavior in many biological models. We show by the theory of center manifolds and random invariant manifolds that if the order of the noise is high enough, trajectories essentially pass the fold point in the manner as though there is no noise.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, Random Dynamical Systems, Springer, New York, 1998.doi: 10.1007/978-3-662-12878-7.

    [2]

    N. Berglund and B. Gentz, Noise-Induced Phenomena in Slow-fast Dynamical Systems. A Sample-Paths Approach, Probab. Appl., Springer, London, 2006.

    [3]

    P. Bates, J. Li and K. Lu, Normally hyperbolic invariant manifolds for random dynamical systems, Trans. Amer. Math. Soc., 365 (2013), 5933-5966.doi: 10.1090/S0002-9947-2013-05825-4.

    [4]

    P. Bates, J. Li and K. Lu, Invariant foliations for random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 3639-3666.doi: 10.3934/dcds.2014.34.3639.

    [5]

    P. Bates, J. Li and K. Lu, Geometric singular perturbation theory with real noise, J. Differential Equations, 259 (2015), 5137-5167.doi: 10.1016/j.jde.2015.06.023.

    [6]

    F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100 pp.doi: 10.1090/memo/0577.

    [7]

    N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.doi: 10.1016/0022-0396(79)90152-9.

    [8]

    M. Krupa and P. Szmolyan, Extending singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Analysis, 33 (2001), 286-314.doi: 10.1137/S0036141099360919.

    [9]

    K. Lu and Q.-D. Wang, Chaos in differential equations driven by a nonautonomous force, Nonlinearity, 23 (2010), 2935-2975.doi: 10.1088/0951-7715/23/11/012.

    [10]

    E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum Press, New York, 1980.doi: 10.1007/978-1-4615-9047-7.

    [11]

    P. Szmolyan and M. Wechselberger, Relaxation oscillation in $R^3$, J. Differential Equations, 200 (2004), 69-104.doi: 10.1016/j.jde.2003.09.010.

    [12]

    D. Terman, The transition from bursting to continuous spiking in an excitable membrane model, J. Nonlinear Sci., 2 (1992), 133-182.doi: 10.1007/BF02429854.

    [13]

    D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math., 51 (1991), 1418-1450.doi: 10.1137/0151071.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return