\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear Neumann problems with indefinite potential and concave terms

Abstract Related Papers Cited by
  • In this paper we conduct a detailed study of Neumann problems driven by a nonhomogeneous differential operator plus an indefinite potential and with concave contribution in the reaction. We deal with both superlinear and sublinear (possibly resonant) problems and we produce constant sign and nodal solutions. We also examine semilinear equations resonant at higher parts of the spectrum and equations with a negative concavity.
    Mathematics Subject Classification: 35J20, 35J60, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs, AMS, vol. 196, no. 905, 2008.doi: 10.1090/memo/0915.

    [2]

    H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), 127-166.doi: 10.1007/BF01215273.

    [3]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Functional Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [4]

    G. Barletta, R. Livrea and N. S. Papageorgiou, A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian, Comm. Pure. Appl. Anal., 13 (2014), 1075-1086.doi: 10.3934/cpaa.2014.13.1075.

    [5]

    A. Castro and A. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl., 120 (1979), 113-137.doi: 10.1007/BF02411940.

    [6]

    A. Castro, J. Cossio and C. Vélez, Existence and qualitative properties of solutions for nonlinear Dirichlet problems, Discrete Cont Dyn Systems, 33 (2013), 123-140.

    [7]

    L. Cherfils and V. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with p&q Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22.

    [8]

    G. M. Coclite and M. M. Coclite, On a Dirichlet problem in bounded domains with singular nonlinearity, Discrete Contin. Dynam. Systems, 33 (2013), 4923-4944.doi: 10.3934/dcds.2013.33.4923.

    [9]

    Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent, Discrete Contin. Dynam. Systems, 32 (2012), 795-826.

    [10]

    M. Filippakis and N. S. Papageorgiou, Nodal solutions for Neumann problems with a nonhomogeneous differential operator, Funkc. Ekv., 56 (2013), 63-79.doi: 10.1619/fesi.56.63.

    [11]

    M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation, Discrete Cont Dyn Systems, 24 (2009), 405-440.doi: 10.3934/dcds.2009.24.405.

    [12]

    J. Garcia Azorero, J. Manfredi and J. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190.

    [13]

    L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006.

    [14]

    L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870.

    [15]

    L. Gasinski and N. S. Papageorgiou, Dirichlet $(p,q)$-equations at resonance, Discrete Contin. Dynam. Systems, 34 (2014), 2037-2060.

    [16]

    T. Godoy, J.-P. Gossez and S. Paczka, On the principal eigenvalues of some elliptic problems with large drift, Discrete Contin. Dynam. Systems, 33 (2013), 225-237.doi: 10.3934/dcds.2013.33.225.

    [17]

    Z. Guo and Z. Liu, Perturbed elliptic equations with oscillatory nonlinearities, Discrete Cont Dyn Systems, 32 (2012), 3567-3585.doi: 10.3934/dcds.2012.32.3567.

    [18]

    Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.doi: 10.1016/S0022-247X(03)00282-8.

    [19]

    Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index, Comm. Pure. Appl. Anal., 10 (2011), 507-525.doi: 10.3934/cpaa.2011.10.507.

    [20]

    Shouchuan Hu and N. S. Papageorgiou, Multipcility of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030.

    [21]

    Shouchuan Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Comm. Pure Appl. Anal., 10 (2011), 1055-1078.doi: 10.3934/cpaa.2011.10.1055.

    [22]

    Shouchuan Hu and N. S. Papageorgiou, Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities, Comm. Pure Applied Anal., 11 (2012), 2005-2021.doi: 10.3934/cpaa.2012.11.2005.

    [23]

    Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601.doi: 10.1016/S0022-247X(03)00165-3.

    [24]

    E. Ko, E. K. Lee and R. Shivaji, Multiplicity results for classes of singular problems on an exterior domain, Discrete Cont Dyn Systems, 33 (2013), 5153-5166.doi: 10.3934/dcds.2013.33.5153.

    [25]

    S. Kyritsi and N. S. Papageorgiou, Multiple solutions for nonlinear elliptic equations with asymmetric reaction term, Discrete Cont Dyn Systems, 33 (2013), 2469-2494.

    [26]

    G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlin. Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3.

    [27]

    S. Liu and S. Li, Critical groups at infinity, saddle point reduction and elliptic resonant problems, Comm. Contemp. Math., 5 (2003), 761-773.doi: 10.1142/S0219199703001129.

    [28]

    S. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.doi: 10.3934/cpaa.2013.12.815.

    [29]

    V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory, Topol. Methods Nonl. Anal., 10 (1997), 387-397.

    [30]

    D. Motreanu, V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.doi: 10.1007/978-1-4614-9323-5.

    [31]

    D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems, Comm. Pure Appl. Anal., 10 (2011), 1791-1816.doi: 10.3934/cpaa.2011.10.1791.

    [32]

    D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems, J. Diff. Equas., 232 (2007), 1-35.doi: 10.1016/j.jde.2006.09.008.

    [33]

    D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc., 139 (2011), 3527-3535.doi: 10.1090/S0002-9939-2011-10884-0.

    [34]

    D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super Pisa Cl. SCI., 11 (2012), 729-788.

    [35]

    D. Mugnai and N. S. Papageorgiou, Wang's multiplicity result for superlinear $(p,q)$-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc., 366 (2014), 4919-4937.doi: 10.1090/S0002-9947-2013-06124-7.

    [36]

    F. D. dePaiva and E. Massa, Multiple solutions for some elliptic equations with nonlinearity concave at the origin, Nonlin. Anal., 66 (2007), 2940-2946.doi: 10.1016/j.na.2006.04.015.

    [37]

    R. Palais, Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966), 115-132.

    [38]

    N. S. Papageorgiou and S. Th. Kyritsi, Handbook of Applied Analysis, Springer, New York, 2009.doi: 10.1007/b120946.

    [39]

    N. S. Papageorgiou and V. D. Radulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430.doi: 10.1007/s00245-013-9227-z.

    [40]

    N. S. Papageorgiou and G. Smyrlis, Positive solutions for nonlinear Neumann problems with concave and convex terms, Positivity, 16 (2012), 271-296.doi: 10.1007/s11117-011-0124-x.

    [41]

    N. S. Papageorgiou and G. Smyrlis, On a class of parametric Neumann problems with indefinite and unbounded potential, Forum Math., to appear. doi: 10.1515/forum-2012-0042.

    [42]

    N. S. Papageorgiou and P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlin. Studies, 14 (2014), 565-592.

    [43]

    N. S. Papageorgiou and P. Winkert, Resonant $(p,2)$-equations with concave terms, Appl. Anal., to appear. doi: 10.1080/00036811.2014.895332.

    [44]

    K. Perera, Multiplicity results for some elliptic problems with concave nonlinearities, J. Diff. Equas., 140 (1997), 133-141.doi: 10.1006/jdeq.1997.3310.

    [45]

    P. Poláčik, On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains, Discrete Cont Dyn Systems, 34 (2014), 2657-2667.doi: 10.3934/dcds.2014.34.2657.

    [46]

    P. Pucci and J. Serrin, The Maximum Principle, Birkhauser, Basel, 2007.

    [47]

    P. Sacks and M. Warma, Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data, Discrete Cont Dyn Systems, 34 (2014), 761-787.

    [48]

    R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Cont Dyn Systems, 33 (2013), 2105-2137.

    [49]

    M. Struwe, Variatioanl Methods, Springer-Verlag, Berlin, 1990.doi: 10.1007/978-3-662-02624-3.

    [50]

    A. Szulkin and S. Waliullah, Infinitely many solutions for some singular elliptic problems, Discrete Cont Dyn Systems, 33 (2013), 321-333.

    [51]

    J. Tan, Positive solutions for non local elliptic problems, Discrete Cont Dyn Systems, 33 (2013), 837-859.doi: 10.3934/dcds.2013.33.837.

    [52]

    K. Thews, Nonntrivial solutions of elliptic equations at resonance, Proc. Royal Soc. Edinburgh, 85A (1980), 119-129.doi: 10.1017/S0308210500011732.

    [53]

    X. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equas., 93 (1991), 283-310.doi: 10.1016/0022-0396(91)90014-Z.

    [54]

    P. Winkert, $L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems, NoDEA Nonlin. Diff. Equ. Appl., 17 (2010), 289-302.doi: 10.1007/s00030-009-0054-5.

    [55]

    X. Yu, Liouville type theorem for nonlinear elliptic equation with general nonlinearity, Discrete Cont Dyn Systems, 34 (2014), 4947-4966.doi: 10.3934/dcds.2014.34.4947.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return