\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cyclicity of some Liénard Systems

Abstract Related Papers Cited by
  • The Liénard system and its generalizations are important models of nonlinear oscillators. We study small-amplitude limit cycles of two families of Liénard systems and find exact number of such limit cycles bifurcating from a center or focus at the origin for these families, thus obtaining the precise bound for cyclicity of the families.
    Mathematics Subject Classification: Primary: 34C07; Secondary: 37G15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Mayer, Theory of bifurcations of dynamic systems on a plane, New York: Wiley, 1973.

    [2]

    N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sbornik N. S., 30 (1952), 181-196; Translations Amer. Math. Soc., 100 (1954), 181-196.

    [3]

    T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Cambridge Philos. Soc., 95 (1984), 359-366.doi: 10.1017/S0305004100061636.

    [4]

    A. Buică and J. Llibre, Limit cycles of a perturbed cubic polynomial differential center, Chaos Solitons & Fractals, 32 (2007), 1059-1069.doi: 10.1016/j.chaos.2005.11.060.

    [5]

    L. A. Cherkas, Conditions for a Liénard equation to have a center, Differ. Uravn., 12 (1976), 292-298; Differ. Equ., 12 (1976), 201-206.

    [6]

    C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Transactions Amer. Math. Soc., 312 (1989), 319-329.doi: 10.2307/2000999.

    [7]

    C. Christopher, Estimating limit cycles bifurcations, in Trends in Mathematics, Differential Equations with Symbolic Computations (Eds. D. Wang and Z. Zheng), Birkhäuser-Verlag, (2005), 23-36.doi: 10.1007/3-7643-7429-2_2.

    [8]

    F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations, Proc. Amer. Math. Soc., 135 (2007), 1895-1904.doi: 10.1090/S0002-9939-07-08688-1.

    [9]

    B. Ferčec and A. Mahdi, Center conditions and cyclicity for a family of cubic systems: Computer algebra approach, Mathematics and Computers in Simulation, 87 (2013), 55-67.doi: 10.1016/j.matcom.2013.02.003.

    [10]

    A. Gasull, J. T. Lázaro and J. Torregrosa, Upper bounds for the number of zeroes for some Abelian integrals, Nonlinear Anal., 75 (2012), 5169-5179.doi: 10.1016/j.na.2012.04.033.

    [11]

    A. Gasull, C. Li and J. Torregrosa, Limit cycles appearing from the perturbation of a system with a multiple line of critical points, Nonlinear Anal., 75 (2012), 278-285.doi: 10.1016/j.na.2011.08.032.

    [12]

    A. Gasull, R. Prohens and J. Torregrosa, Bifurcation of limit cycles from a polynomial non-global center, J. Dynam. Differential Equations, 20 (2008), 945-960.doi: 10.1007/s10884-008-9112-7.

    [13]

    A. Gasull and J. Torregrosa, Small-amplitude limit cycles in Liénard systems via multiplicity, J. Differential Equations, 159 (1999), 186-211.doi: 10.1006/jdeq.1999.3649.

    [14]

    B. Coll, F. Dumortier and R. Prohens, Configurations of limit cycles in Liénard equations, J. Differential Equations, 255 (2013), 4169-4184.doi: 10.1016/j.jde.2013.08.004.

    [15]

    M. A. Golberg, The derivative of a determinant, American Mathematical Monthly, (1972), 1124-1126.

    [16]

    R. C. Gunning and H. Rossi, Analvvytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965.

    [17]

    M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations, 15 (1999), 113-126.

    [18]

    M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifurcations, Interna. J. Bifur. Chaos, 22 (2012), 1250296.doi: 10.1142/S0218127412502963.

    [19]

    M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    [20]

    J. Jiang and M. Han, Limit cycles in two types of symmetric Liénard systems, Interna. J. Bifur. Chaos, 17 (2007), 2169-2174.doi: 10.1142/S0218127407018300.

    [21]

    J. Jiang and M. Han, Small-amplitude limit cycles of some Liénard systems, Nonlinear Anal. TMA, 71 (2009), 6373-6377.doi: 10.1016/j.na.2009.09.011.

    [22]

    V. Levandovskyy, G. Pfister and V. G. Romanovski, Evaluating cyclicity of cubic systems with algorithms of computational algebra, Communications in Pure and Applied Analysis, 11 (2012), 2023-2035.doi: 10.3934/cpaa.2012.11.2023.

    [23]

    A. M. Liapunov, Stability of motion, with a contribution by V. A. Pliss and an introduction by V. P. Basov., Mathematics in Science and Engineering, 30 (1966).

    [24]

    A. Liénard, Etude des oscillations entretenues, Rev. gen. electr., 23 (1928), 901-912.

    [25]

    A. Lins, W. de Melo and C. C. Pugh, On Liénard's equation, in Geometry and Topology, Springer Berlin Heidelberg, (1977), 335-357.

    [26]

    J. Llibre, A. C. Mereu and M. A. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc., 148 (2010), 363-383.doi: 10.1017/S0305004109990193.

    [27]

    J. Llibre, J. S. Pérez del Río and J. A. Rodríguez, Averaging analysis of a perturbated quadratic center, Nonlinear Anal., 46 (2001), 45-51.doi: 10.1016/S0362-546X(99)00444-7.

    [28]

    N. Lloyd and S. Lynch, Small-amplitude limit cycles of certain Liénard systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 418 (1988), 199-208.

    [29]

    A. L. Neto, On the number of solutions of the equation $\frac{dx}{dt} = \sum_{j = 0}^n a_j (t) x^j ,0 \leq t \leq 1$, for which $x(0)=x(1)$, Invent. Math., 59 (1980), no. 1, 67-76.doi: 10.1007/BF01390315.

    [30]

    V. G. Romanovski, On the cyclicity of the equilibrium position of the center or focus type of a certain system, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 19, no. 4, 82-87 (in Russian); (1986): Vestnik Leningrad Univ. Math. 19, no. 4, 51-56 (English translation).

    [31]

    V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser Boston, Inc., Boston, MA, 2009.doi: 10.1007/978-0-8176-4727-8.

    [32]

    R. Roussarie, A Note On Finite Cyclicity Property and Hilbert's 16th Problem, Lecture Notes in Mathematics, Vol. 1331, New York: Springer-Verlag, 1988.doi: 10.1007/BFb0083072.

    [33]

    R. Roussarie, Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics, 164, Birkhäuser, Basel, 1998.doi: 10.1007/978-3-0348-8798-4.

    [34]

    K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differ. Uravn. (Russian), 1 (1965), 53-66; Differ. Equ. (English translation), 1 (1965), 36-47.

    [35]

    Y. Tian and M. Han, Hopf bifurcations for two types of Liénard systems, J. Differential Equations, 251 (2011), 834-859.doi: 10.1016/j.jde.2011.05.029.

    [36]

    G. Xiang and M. Han, Global bifurcation of limit cycles in a family of polynomial systems, J. Math. Anal. Appl., 295 (2004), 633-644.doi: 10.1016/j.jmaa.2004.03.047.

    [37]

    G. Xiang and M. Han, Global bifurcation of limit cycles in a family of multiparameter system, Interna. J. Bifur. Chaos, 14 (2004), 3325-3335.doi: 10.1142/S0218127404011144.

    [38]

    D. Yan and Y. Tian, Hopf cyclicity for a Liénard system, J. Zhejiang Univ.(Science edition), 38 (2011), 10-18.

    [39]

    H. Żołądek, On a certain generalization of Bautin's theorem, Nonlinearity, 7 (1994), 273-279.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(186) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return