Skip to main content

Comparative exoproteomics of Staphylococcus epidermidis of human and bovine origin to identify bacterial factors involved in adaptation into bovine host

  • Conference paper
Farm animal proteomics

Abstract

Gram-positive staphylococci include commensal and pathogenic bacteria that are adapted to different mammalian species, particularly to humans and cattle[1]. Among these species, Staphylococcus epidermidis is considered an opportunistic pathogen that ranks first among the causative agents of nosocomial infections and is the most common source of infection on indwelling medical devices[2]. S. epidermidis is also one of the major causative agents of bovine mastitis, which is a major economic burden in the dairy industry world-wide and the most common reason for antibiotic use in dairy cattle. It is also one of the most prevalent staphylococcal species found on human skin, which has led to speculations that bovine udder infections caused by S. epidermidis may be of human origin. The evolutionary success of this species depends on their remarkable ability to adapt to different environments and hosts[2], but the mechanisms by which these species select the host and establish successful infections is not well known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kloos WE, Schleifer KH. 1986. Genus IV. Staphylococcus Rosenbach 1884. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G. (Eds.), Bergey’s manual of systematic bacteriology. Vol. 2, Williams & Wilkins, Baltimore, London, pp. 1013–35.

    Google Scholar 

  2. Otto M. 2009. Staphylococcus epidermidis - the ‘accidental’ pathogen. Nature Rev 7, 555–64.

    Article  CAS  Google Scholar 

  3. Siljamäki P, Iivanainen A, Laine PK, Kankainen M, Simojoki H, Salomäki T, Pyörälä S, Paulin L, Auvinen P, Koskinen P, Holm L, Karonen T, Taponen S, Nyman TA, Sukura A, Kalkkinen N, Savijoki K, Varmanen P. Multigenome analysis and proteome profiling of Staphylococcus epidermidis strains to screen for host- specificity determining factors, in preparation.

    Google Scholar 

  4. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM. 2003. Genome-based analysis of virulence genes in a non-biofilm-formingStaphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49, 1577–1593.

    Article  PubMed  CAS  Google Scholar 

  5. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187, 2426–2438.

    Article  PubMed  CAS  Google Scholar 

  6. Savijoki K, Liétzen N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA. 2011. Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705. J Proteome Res 10, 460–473.

    Article  Google Scholar 

  7. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  8. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. 2007. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6, 1638–1655.

    Article  PubMed  CAS  Google Scholar 

  9. Lietzén N, Natri L, Nevalainen OS, Salmi J, Nyman TA. 2010. Compid - a new software tool to integrate and compare MS/MS based protein identification results from Mascot and Paragon J Proteome Res 9, 6795–6800.

    Google Scholar 

  10. Elias JE, Gygi SP. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.

    Article  PubMed  CAS  Google Scholar 

  11. Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA. 2004. ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res 32:W638-44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuula A. Nyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this paper

Cite this paper

Savijoki, K., Siljamäki, P., Lietzén, N., Varmanen, P., Kankainen, M., Nyman, T.A. (2012). Comparative exoproteomics of Staphylococcus epidermidis of human and bovine origin to identify bacterial factors involved in adaptation into bovine host. In: Rodrigues, P., Eckersall, D., de Almeida, A. (eds) Farm animal proteomics. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-751-6_26

Download citation

Publish with us

Policies and ethics