• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (15): 39-45.doi: 10.3901/JME.2020.15.039

• 特邀专栏:4D打印技术 • 上一篇    下一篇

扫码分享

基于4D打印技术的水陆两栖机器人运动功能转换及控制

黄忠意1,2,3, 杨浴光1,2,3, 吕鹏宇1,2,3, 段慧玲1,2,3   

  1. 1. 北京大学工学院 北京 100871;
    2. 北京大学湍流与复杂系统国家重点实验室 北京 100871;
    3. 北京大学工程科学与新兴技术高精尖创新中心 100871
  • 收稿日期:2019-08-08 修回日期:2019-11-26 出版日期:2020-08-05 发布日期:2020-10-19
  • 通讯作者: 吕鹏宇(通信作者),男,1986年出生,博士,助理研究员。主要研究方向为流固界面力学、先进制造技术。E-mail:lvpy@pku.edu.cn
  • 作者简介:黄忠意,男,1994年出生。主要研究方向为4D打印、流固耦合。E-mail:zhongyihuang@pku.edu.cn
  • 基金资助:
    国家自然科学基金(91848201,11872004,11802004)和中国科协青年人才托举工程(2017QNRC001)资助项目。

Motion Function Transformation and Control of Amphibious Robot Based on 4D Printing

HUANG Zhongyi1,2,3, YANG Yuguang1,2,3, Lü Pengyu1,2,3, DUAN Huiling1,2,3   

  1. 1. College of Engineering, Peking University, Beijing 100871;
    2. State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871;
    3. Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871
  • Received:2019-08-08 Revised:2019-11-26 Online:2020-08-05 Published:2020-10-19

摘要: 传统水陆两栖机器人的推进结构通常是将陆上推进结构与水上推进结构进行叠加,导致了现有水陆两栖机器人的机械结构较为复杂,增大了控制的难度。基于4D打印技术设计并制备了一种由轮毂和具有热变形响应性质桨叶结构单元组成的轮桨复合推进结构。该结构可通过热刺激变形响应实现水陆运动功能转换,有效地降低了水陆两栖机器人推进结构的复杂度。此外,还分析了几何参数和输入功率对桨叶结构变形响应速率的影响,实现了桨叶结构的可控变形,从而降低了水陆两栖机器人运动控制的难度。原型机试验结果表明,利用4D打印技术制备的水陆两栖机器人在降低了结构复杂度与控制难度的同时,可以实现水陆运动功能转换及控制。

关键词: 4D打印, 水陆两栖机器人, 可控变形, 功能转换, 运动控制

Abstract: The propulsion structure of traditional amphibious robot usually superimposes the land motion structure and the water motion structure, which leads to the complicated mechanical structure of the whole robot and increases the difficulty of control. A wheel-propeller compound propulsion structure consisting of a hub and blades with thermal deformation responsiveness is designed and fabricated based on 4D printing technology. The structure realizes the motion transformation from land to water by the thermal stimulation deformation response, which substantially reduces the complexity of the propulsion structure of the amphibious structure. In addition, the influence of geometric parameters and input power on the deformation rate of the blade structure are analyzed to realize the controllable deformation, which reduces the difficulty of motion control of the robot. Prototype tests show that the amphibious robot prepared by 4D printing technology possesses the capability of motion transformation and control from land to water while reducing the structural complexity and control difficulty.

Key words: 4D printing, amphibious robots, controlled deformation, functional transformation, motion control

中图分类号: