Share:


Simulation of the phase change materials’ characteristics in a thermal energy storage

    Saulius Pakalka Affiliation Bio
    ; Kęstutis Valančius Affiliation Bio
    ; Giedrė Streckienė   Affiliation Bio
    ; Vaidvilė Ulbikaitė Affiliation

Abstract

In order to use efficiently residual, waste or renewable energy, the application of phase change materials (PCM) grows in building energy systems. At the same time, this poses new technological challenges in choosing specific materials, system design solutions, because it requires a specific knowledge of the heat transfer process during the phase change. The aim of the work is to investigate the heat transfer in a PCM based thermal energy storage unit using the COMSOL Multiphysics software. In the analysis, the properties of the material were evaluated during the phase change. This allowed to determine that the thermal conductivity of the material is of great importance for the intensification of heat transfer. In addition, the analysis of several points in the analyzed object revealed that the phase change does not occur in the surface layer of the PCM during the period under consideration. In order to avoid that, additional solutions such as integrating heat-conductive materials into the PCM or increasing the surface area of  the heat transfer could be used.


Article in Lithuanian.


Fazinio virsmo medžiagos charakteristikų šilumos kaupiklyje skaitinis modeliavimas


Santrauka


Siekiant efektyviai išnaudoti perteklinę, atliekinę ar atsinaujinančių energijos išteklių gaminamą energiją, vis dažniau taikomas fazinio virsmo medžiagų (FVM) panaudojimas pastato energetinėse sistemose. Kartu tai kelia naujus technologinius iššūkius pasirenkant konkrečias medžiagas, sistemų projektinius sprendinius, nes reikia gerai išmanyti šilumos mainų procesą vykstant fazės virsmui. Šiame darbe siekiama ištirti šilumos mainus šilumos kaupiklyje su fazinio virsmo medžiagomis naudojantis COMSOL Multiphysics programa. Analizės metu įvertintos medžiagos savybės vykstant fazės virsmui. Tai leido nustatyti, kad medžiagos šilumos laidumo koeficientas turi didelę reikšmę šilumos mainų intensyvinimui. Be to, atskirų taškų analizė tyrimo objekte atskleidė, kad per nagrinėjamąjį laikotarpį FVM paviršiniame sluoksnyje fazės virsmas neįvyksta. Siekiant to išvengti, galimi papildomi sprendimai, tokie kaip šilumai laidžių medžiagų integravimas į FVM arba šilumos mainų paviršiaus ploto didinimas.


Reikšminiai žodžiai: šilumos kaupimas, fazinio virsmo medžiaga (FVM), fazinio virsmo šiluma, šilumos mainai, skaitinis modeliavimas, COMSOL Multiphysics.

Keyword : thermal energy storage, phase change material (PCM), latent heat, heat transfer, numerical simulation, COMSOL multiphysics

How to Cite
Pakalka, S., Valančius, K., Streckienė, G., & Ulbikaitė, V. (2018). Simulation of the phase change materials’ characteristics in a thermal energy storage. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.3225
Published in Issue
Sep 28, 2018
Abstract Views
3362
PDF Downloads
528
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(2), 615-628. https://doi.org/10.1016/j.rser.2009.10.015

Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y., & Mohammad, A. T. (2013). Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 53(1), 147-156. https://doi.org/10.1016/j.applthermaleng.2013.01.011

Buschle, J., Steinmann, W. D., & Tamme, R. (2006). Latent heat storage for process heat applications. In Proceedings of The 10th International Conference on Thermal Energy Storage ECOSTOCK (pp. 1-8). Atlantic City.

Chiew, J., Chin, C. S., Ji, A. J., Toh, W. D., & Gao, Z. (2017). Effects of void spaces in a phase change material based thermal energy storage system. Energy Procedia, 143, 559-565. https://doi.org/10.1016/j.egypro.2017.12.727

Dallaire, J., & Gosselin, L. (2016). Various ways to take into account density change in solid–liquid phase change models: formulation and consequences. International Journal of Heat and Mass Transfer, 103, 672-683. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.045

European Commission (EC). (2016). An EU Strategy on Heating and Cooling. COM(2016) 51. Brussels, 13 p.Foong, C. W., Hustand, J. E., Lovseth, J., & Nydal, O. J. (2010). Numerical study of a high temperature latent heat storage (200–300°C) using Eutectic Nitrate Salt of Sodium Nitrate and Potassium Nitrate. In Proceedings of COMSOL Conference 2010 (pp. 1-8). Paris, France.

Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1 – Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31-55. https://doi.org/10.1016/j.rser.2009.07.035

Groulx, D., & Ogoh, W. (2009). Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system. In Proceedings of the 2009 COMSOL Conference (pp. 1-7). Boston, USA.

Hu, Y., Li, D., Shu, S., & Niu, X. (2017). Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change. International Journal of Heat and Mass Transfer, 113, 1168-1178. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.116

Laing, D., Bauer, T., Steinmann, W. D., & Lehmann, D. (2009, June). Advanced high temperature latent heat storage system – design and test results. In Proceedings of the 11th International Conference on Thermal Energy Storage (pp. 1-8). Stockholm, Sweden.

Liu, C., & Groulx, D. (2011). Numerical study of the effect of fins on the natural convection driven melting of phase change material. In Proceeding of the 2011 COMSOL Conference (pp. 1-7). Boston, USA.

Medrano, M., Yilmaz, M. O., Nogués, M., Martorell, I., Roca, J., & Cabeza, L. F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy, 86(10), 2047-2055. https://doi.org/10.1016/j.apenergy.2009.01.014

Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. An up to date introduction into basics and applications. Berlin: Springer.

Petrone, G., & Cammarata, G. (2012). Simulation of PCM melting process in a differentially heated enclosure. In Proceedings of the 2012 COMSOL Conference. Milan, Italy.

Samara, F., Groulx, D., & Biwole, P. H. (2012). Natural convection driven melting of phase change material: comparison of two methods. In Proceedings of the 2011 COMSOL Conference (pp. 1-7). Boston, USA.

Soares, N. (2015). Thermal energy storage with phase change materials for the improvement of the energy performance of buildings (PhD thesis). Universidade de Coimbra, Portugal.

Zhao, Y., Zhao, C. Y., & Xu, Z. G. (2017). Numerical study of solid-liquid phase change by phase field method. Computers and Fluids, 164(2018), 94-101. https://doi.org/10.1016/j.compfluid.2017.05.032