Skip to main content
Log in

Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (hemiptera: Aleyrodidae)

  • Environmental Science
  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Whiteflies are sap-sucking insects belonging to the hemipteran order. They are well known for their menace to agriculture, as pests and vectors, and are reported for their bacterial and Rickettsia association in B biotype. In the present investigation, culture-dependent and -independent methods were used to reveal the bacterial phylotypes associated with B and Q biotypes. Cultivable bacterial phylotypes varied with respect to growth media and biotypes. Twenty different bacterial genera, including 31 species belong to Actinobacteria, ‘alpha’-, ‘beta’-, ‘gamma’- Proteobacteria, and Firmicutes were isolated from both the biotypes. Of the seventeen phylotypes, Bacillus, Kocuria, Moraxellla, Micrococcus, Sphingomonas and Staphylococcus were common to both B and Q biotypes. Moreover, B biotype was associated with Acinetobacter, Deinococcus, Modestobacter, Microbacterium, and Pseudomonas, whereas Q biotype was associated with Arthrobacter, Bradyrhizobium, Janibacter, Morganella, Naxibacter, and Streptomyces. Application of a culture-independent method revealed the presence of additional symbiotic bacteria: Rickettsia in B biotype and Halomonas in Q biotype, as well as primary endosymbiont in both biotypes, which could not be obtained through culture-dependent method. Presence of Staphylococcus, Micrococcus (in both B and Q biotypes), and Bacillus (only in B biotype) in all developmental stages of B. tabaci indicated their close association with host insect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behar A, Yuval B, and Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14, 2637–2643.

    Article  CAS  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, and Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods. Appl Environ Microbiol 70, 293–300.

    Article  CAS  Google Scholar 

  • Chen DQ, Montllor CB, and Purcell AH (1996) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95, 315–323.

    Article  Google Scholar 

  • Costa HS and Brown JK (1991) Variation in biological characteristics and in esterase patterns among populations of Bemisia tabaci (Genn.) and the association of one population with silverleaf symptom development. Entomol Exp Appl 61, 211–219.

    Article  Google Scholar 

  • Costa HS, Enneberry TJ, and Toscano NC (1997) Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival and sex ratio. J Econ Entomol 90, 333–339.

    CAS  Google Scholar 

  • Costa HS, Westcot DM, Ullman DE, and Johnson MW (1993) Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176, 106–115.

    Article  Google Scholar 

  • Czarnetzki AB and Tebbe CC (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6, 35–44.

    Article  CAS  Google Scholar 

  • Davidson EW, Rosell RC, and Hendrix DL (2000) Culturable bacteria associated with the whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae). Florida Entomol 83, 159–171.

    Article  Google Scholar 

  • de Vries EJ, Breeuwer JAJ, Jacobs G, and Mollema C (2001) The association of western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: Transient or permanent? J Invertebr Pathol 77, 120–128.

    Article  Google Scholar 

  • Dillon RJ and Dillon VM (2004) The gut bacteria of insects: Nonpathogenic interactions. Annu Rev Entomol 49, 71–92.

    Article  CAS  Google Scholar 

  • Dillon RJ, Vennard CT, and Charnley AK (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92, 759–763.

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Genta FA, Dillon RJ, Terra WR, and Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52, 593–601.

    Article  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, and Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72, 3646–3652.

    Article  CAS  Google Scholar 

  • Hosokawa T, Kikuchi Y, Shimada M, and Fukatsu T (2007) Obligate symbiont involved in pest status of host insect. Proc R Soc B 274, 1979–1984.

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Kim GH, and Sa TM (2008) Cross-utilization and expression of outer membrane receptor proteins for siderophore uptake by Diamondback moth-Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. FEMS Microbiol Lett 289, 27–33.

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, and Sa TM (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, -susceptible, and field-caught populations of diamondback moth-Plutella xylostella and their potential for antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol 103, 2664–2675.

    Article  CAS  Google Scholar 

  • Iverson KL, Bromel MC, Anderson AW, and Freeman TP (1984) Bacterial symbionts in the sugar beet root maggot, Tetanops myopaeformis (van Röder). Appl Environ Microbiol 47, 22–27.

    CAS  Google Scholar 

  • Kikuchi Y, Meng XY, and Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71, 4035–4043.

    Article  CAS  Google Scholar 

  • Kim EH, Sung JW, Yang JO, Ahn HG, Yoon C, Seo MJ, and Kim GH (2007) Comparison of insecticide susceptibility and enzyme activities of biotype B and Q of Bemisia tabaci. Korean J Pestic Sci 11, 320–330.

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.

    Article  CAS  Google Scholar 

  • Lacava PT, Parker J, Andreote FD, Dini-andreote F, Ramirez JL, and Miller TA (2007) Analysis of the bacterial community in glassy-winged sharpshooter heads. Entomol Res 37, 261–266.

    Article  Google Scholar 

  • Lauzon CR, Potter SE, and Prokopy RJ (2003) Degradation and detoxification of the dihydrochalcone phloridzin by Enterobacter agglomerans, a bacterium associated with the apple pest, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Environ Entomol 32, 953–962.

    Article  CAS  Google Scholar 

  • Mohan M and Gujar GT (2003) Local variation in susceptibility of diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protec 22, 495–504.

    Article  CAS  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, and Wilcox JL (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100, 14543–14548.

    Article  CAS  Google Scholar 

  • Muyzer G, De Wall EC, and Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.

    CAS  Google Scholar 

  • Nardi JB, Mackie RI, and Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystem? J Insect Physiol 48, 751–763.

    Article  CAS  Google Scholar 

  • Nishiwaki H, Ito K, Shimomura M, Nakashima K, and Matsuda K (2007) Insecticidal bacteria isolated from predatory larvae of the antlion species Myrmeleon bore (Neuroptera: Myrmeleontidae). J Invertebr Pathol 96, 80–88.

    Article  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, and Maniatis T (1989) In Molecular Cloning: A Laboratory Manual, (2nd ed.). Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Seo MJ, Yang JO, Yoon C, Youn YN, and Kim GH (2007) Differentiation in feeding behaviour of biotypes B and Q of Bemisia tabaci (Homoptera: Aleyrodidae) against three insecticides. Korean J Appl Entomol 46, 401–408.

    Article  Google Scholar 

  • Stackebrandt E and Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.

    Article  CAS  Google Scholar 

  • Takatsuka J and Kunimi Y (2000) Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J Invertebr Pathol 76, 222–226.

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position — specific gap penalties and weight matrix choice. Nucl Acids Res 22, 4673–4680.

    Article  CAS  Google Scholar 

  • Tsuchida T, Koga R, and Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303, 1989.

    Article  CAS  Google Scholar 

  • Xiang H, Wei GH, Jia S, Huang J, Miao XX, Zhou Z, Zhao LP, and Huang YP (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol 52, 1085–1092.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Hah Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indiragandhi, P., Yoon, C., Yang, J.O. et al. Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (hemiptera: Aleyrodidae). J. Korean Soc. Appl. Biol. Chem. 53, 605–617 (2010). https://doi.org/10.3839/jksabc.2010.093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2010.093

Key words:

Navigation