光学学报, 2023, 43 (18): 1899903, 网络出版: 2023-09-14  

地基激光雷达对大气金属层的探测研究 下载: 669次特邀综述

Detection of Atmospheric Metal Layer by Ground-Based Lidar
作者单位
1 太原理工大学物理学院,山西 太原 030024
2 中国科学院国家空间科学中心,北京 100190
3 中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071
摘要
中层顶区域(80~110 km)的大气探测具有重要的科研和应用价值。长期以来,由于传统探测手段的限制,该区域一直是人类了解相对较少的大气层区域,存在着由流星注入产生的大气金属层。由于金属原子、离子共振荧光散射的散射截面比瑞利散射、拉曼散射大得多,其可以被激光雷达探测到。半个世纪以来,利用原子、离子特定波长的跃迁光谱,向高空大气发射特定波长的激光,并结合遥感技术,开展了大气金属层探测,这些金属原子、离子是大气波动极好的示踪物,可获得大气原子数密度、温度、风场等参量。近年来,随着热层金属层不断被发现,大气金属层的高度范围逐渐拓展,金属层研究又受到人们的极大关注。本文以作者团队及合作者的工作为基础,以大气金属层激光雷达采用的激光器发展历程为主线,介绍了地基激光雷达对大气金属层探测研究的发展过程以及国内外研究现状与发展趋势。
Abstract
Significance

The atmospheric detection of the mesosphere (about 80-110 km) is of scientific research and application significance. There are many important spatial features and phenomena in this region, including the coldest altitude of the Earth's atmosphere (~90 km), and special phenomena such as high-altitude noctilucent clouds, temperature inversion layer, and atmospheric metal layers also occur in this region. Gravity wave fragmentation makes the atmospheric disturbances in this region particularly intense, and the wind shear in this region becomes extremely intense. This region is also part of the atmospheric photochemical layer, and the atmospheric compositions have dramatic diurnal variations. With the development of aerospace, the influence of this region needs to be closely focused on. For example, suborbital flights (generally defined as 35 to 300 km to the Earth) involve this region, and these studies will lay a solid foundation for future suborbital commercial flights.

This region has long been relatively unknown to humans because of the limitations of traditional detection methods. Fortunately, there are atmospheric metal layers in this region. As the cross section of resonance fluorescence scattering of metal atoms and ions is much larger than those of Rayleigh scattering and Raman scattering, it can be employed to detect low-concentration atmospheric components. In the past half century, by adopting the transition spectra of atoms and ions at specific wavelengths, the metal layer of the atmosphere has been detected by lasers with specific wavelengths and laser remote sensing technology. These metal atoms and ions are excellent tracers of atmospheric fluctuations, and many parameters such as atomic number density, temperature, and wind have been obtained. In recent years, with the discovery of thermospheric metal layers, the height range of atmospheric metal layers has been expanded, and the study of metal layers has been paid great attention to.

Progress

Based on the research of our team and collaborators, we introduce the development of atmospheric metal layer lidar and the current situation and trend of atmospheric metal layer detection by lidar. First, the dye laser opens the door to the atmospheric metal layer. Second, the sum frequency of the dye laser and YAG laser increases the laser energy further. Third, with pulsed dye amplifier employing dye as the working substance, directly amplifies the single-mode continuous seed laser into a high-power pulse laser. This meets the dual characteristics of high spectral resolution and sound center frequency stability of wind and temperature detection in metal layers. Fourth, narrow-band filtering technology extends lidar detection from night to all time. Fifth, a dye laser needs to change dye frequently with low single pulse energy, and all-solid-state laser solves this problem. Sixth, OPO lasers have many advantages such as high integration degree, good pump light spot, high single pulse energy, and further improved detection ability of atmospheric compositions. Additionally, we list the parameters of sodium atom, calcium atom and ion, iron atom lidar, and potassium atom lidar in four tables respectively.

Conclusions and Prospects

With the development of Q-switching, harmonic generation, tuning, high-power optical fiber devices, and other technologies, the pulse energy, stability, and operation convenience of lasers are constantly improving. In recent years, the simultaneous detection of multi-component density, temperature, and wind has become the trend. The multi-function lidar with high resolution and detection accuracy has been excavated and applied in China and abroad. In the future, the development and application of automated and intelligent lidar will promote satellite lidar, and in combination with ground-based lidar, more ion component detection will be possible to provide support for temperature and wind detection at higher altitudes. Finally, the cognition of chemical and physical processes in the upper atmosphere, and the coupling research on different regions of the ionosphere will be advanced.

1 引 言

中层顶区域(80~110 km)有许多非常重要的空间特征与现象,高空夜光云、中层顶逆温、大气金属层等特殊现象也都发生在该区域,因此对该区域大气的探测具有重要的科研和应用意义。重力波破碎使得中层顶区域的大气扰动尤为剧烈,导致该区域的风场、风切变等极为强烈,而该区域也是大气光化学反应的重要组成部分,大气成分具有显著的昼夜变化特征。随着航空航天技术的发展,这一区域产生的影响受到了密切的关注。例如亚轨道飞行(通常指距离地球35~300 km的范围)正好涉及这一区域,这些研究工作将为未来亚轨道商业飞行打下坚实基础。由于大气密度过低,激光的瑞利散射信号在80 km以上已经非常微弱,难以开展有效的瑞利激光雷达探测。

大气金属层是以原子、离子、化合物等形式稳定存在于80~105 km高空大气的金属蒸气,一般认为每天大约有44 t金属蒸气在流星消融的过程中注入地球大气,包含Fe、Mg、Na、Ca、Ni、K等元素的蒸气1。由于金属原子、离子共振荧光散射的散射截面比瑞利散射、拉曼散射大得多,采用大规模的望远镜、激光器配置,可以得到较强的荧光回波信号。荧光激光雷达作为一种主动光学地基探测手段,利用原子、离子特定波长的跃迁光谱,向高空大气发射特定波长的激光,金属原子、离子吸收激光能量后产生共振荧光,被望远镜接收后可以实现高空大气的特定金属成分高时空分辨率、高探测精度的密度探测,还可以通过探测原子超精细结构谱线的展宽与频移,实现中高层大气风场与温度的激光雷达探测。随着调Q、调谐、倍频、非线性光学、光电检测等技术的发展,激光雷达的探测参数、范围、精度都在不断提升。自20世纪60年代Bowman等2首次报道了地基激光雷达对大气钠原子层的观测以来,全球范围已有数十个地基激光雷达台站,目前积累了钠(589 nm)、铁(372 nm;374 nm)、钾(770 nm)、钙(原子:423 nm;离子:393 nm)、镍(337 nm;341 nm)等金属原子、离子的观测数据。由于金属原子、离子共振荧光波长都不是常用固体激光器的本征波长,因此国际上主要采用有机染料作为增益物质来获得上述波长的激光,用于激发金属原子、离子的共振荧光散射。大气金属层中钠原子的浓度较高、后向散射截面较大,加上钠染料激光器发展最为成熟,大气钠原子成为探测最为广泛的成分,钠层风温激光雷达也成为当今临近空间探测的主流手段,受到各个国家的高度重视。近年来,研究人员纷纷报道了不同地区、高度在110~200 km的“热层金属层”,拓展了大气金属层的高度范围,使得该区域空间环境的激光雷达探测成为可能,因此大气金属层的研究又受到人们的广泛关注。最近,随着固体OPO激光器的发展,单脉冲能量进一步增强,十分有效地提高了激光雷达的探测灵敏度,发现了近300 km的金属离子层,在极大程度上拓展了金属层激光雷达的探测范围。目前,利用钠原子层后向散射荧光的钠导引星已经成为地基光学望远镜自适应光学系统的理想信标光,并且在空间碎片跟踪、星-地激光通信、中间层磁力计等方面开展了广泛应用3-6。对大气金属层长期、深入的观测,并以金属原子、离子为示踪物,获取金属成分密度以及相应的风场与温度,对于研究中高层大气的结构和变化特征、理解发生在这个区域的基本物理、化学过程,保障航天器和航天活动具有重要意义,对于研究宇宙起源与演化、保障深空探测也将有更为深远的影响。

本文以作者团队及合作者的工作为基础,以大气金属层激光雷达采用的激光器发展历程为主线,介绍了激光雷达对大气金属层探测研究的发展过程以及国内外现状与趋势。

2 染料激光器:开启大气金属层的探测之门

地球大气上空存在一层Na、K、Fe、Ca、Ni等金属原子/离子,为获得该金属层的相关信息,激光雷达发射激光波长必须精确对准被测金属原子的能级跃迁特征谱线,且金属原子/离子的特征谱线各不相同。通常红宝石和钇铝石榴石等材料作为工作物质能产生大功率脉冲激光,这些晶体材料的增益范围通常只有几nm。荧光染料具有较宽的荧光光谱,分布在紫外到近红外的光谱范围(图1,数据来源于https://www.radiant-dyes.com/index.php/products/laser-dyes/list-of-laser-dyes),通过泵浦激发可获得高峰值功率、宽光谱范围的脉冲激光,为金属层探测提供有效探测工具。

图 1. 一些染料物质的激发效率与光谱分布图

Fig. 1. Excitation efficiency and spectral distribution of some dye substances

下载图片 查看所有图片

表 1. 钠原子激光雷达参数

Table 1. Sodium atom lidar parameters

Research group(Year)Geographic locationPulse energy /mJTelescope diameter /mRef.
Bowman et al.(1969)England Buckingham-Shire(50°N,7°W)-(Photons transmitted per pulse:1016)-(Receiver area:0.6 m2)[2]
Hake et al.(1972)USACalifornia(40.2°N,88.2°W)5000.4[15]
Megie et al.(1977)FranceHaute Provence Observatory(44°N)800-10000.818[16]
Simonich et al.(1979)BrazilSão José dos Campos(54°N,12°E)20-(Receiver area:0.39 m2)[17]
Richter et al.(1981)USAIllinois(40.2°N,88.2°W)100-(Receiver area:0.14 m2)[18]
Juramy et al.(1981)USSRHeyss Island(30.5°N,114.3°E)10000.41[19]
Nomura et al.(1987)AntarcticSyowa Station(69°S,39.6°E)2000.5[20]
Gardner et al.(1989)USAHawaii(20°N,155°W)251.22[21]
Shibata et al.(2006)IndonesiaKototabang(0.2°S,100.3°E)300.45[22]
Prasanth et al.(2007)IndiaGadanki(13.5°N,79.2°E)250.75[23]
Pfrommer et al.(2010)Canada/6(Focus on the effect of sodium atomic layer on adaptive optics system of very large telescope)[24]
Kawahara et al.(2011)AntarcticSyowa Station(69°S,39°E)40/[25]
Tsuda et al.(2011)NorwayTromsø(69.6°N,19.2°E)/0.355[26]
Gong et al.(2003)ChinaWuhan Xiaohong Mountain(30.55°N,114.35°E)300.95[27]
Yi et al.(2002)ChinaWuhan University(30.5°N,114.4°E)600.52[28]
Dou et al.(2009)ChinaHefeiUniversity of Science and Technology of China(31.8°N,117.3°E)601[29]
NSSC stationChinaBeijing Yanqing(40.5°N,116.0°E)401.23
Hainan Normal University(20.0°N,110.5°E)401
Andrioli et al.(2020)BrazilSão José dos Campos(23.1°S,45.9°W)601[30]

查看所有表

表 2. 钙原子与钙离子激光雷达参数

Table 2. Calcium atom and ion lidar parameters

Research group(Year)Geographical locationPulse energy /mJTelescope diameter/ mRef.
Granier et al.(1985)FranceObservatoire de Haute Provence(44°N,6°E)Ca:25Ca+:200.8[31]
Gardner et al.(1993)USAUrbana Atmospheric Observatory(40.2°N,88.2°W)Ca:5Ca+:201[33]
Qian et al.(1995)[34]
Alpers et al.(1996)GermanJuliusru(54.5°N,13.4°E)Ca:15Ca+:120.8[35]
Gerding et al.(2000)GermanKühlungsborn(54°N,12°E)Ca:22Ca+:175 or 7(1997)parabolic mirrors of 0.5 m diameter each[32]
Tepley et al.(2003)USAArecibo(18.3°N,66.7°W)Ca:25Ca+:210.8[36]
Raizada et al.(2004)[37]
Yi et al.(2013)ChinaWuhan(30.5°N,114.3°E)Ca:20Ca+:251[38]
Ejiri et al.(2019)JapanTachikawa(35.7°N,139.4°E)Ca+:120.83[39]
NSSC stationChinaBeijing(40.5°N,116.0°E)Ca:30Ca+:301.2[40]

查看所有表

染料激光器是以某种有机染料溶解于一定溶剂(甲醇、乙醇、水等)中作为激活介质的激光器,有机染料在光谱的可见光范围及其邻近的近紫外和近红外区域对光产生强烈吸收,可以作为激光工作物质且有很宽的调谐范围7。1966年,Sorokin和Lankard8用红宝石激光器泵浦花菁类染料,首次获得激光辐射,染料激光器开始迅速发展。由于液体染料激光器具有在很宽的光谱范围内可调谐、谱线带宽窄、光束发散角小、价格相对低廉的特点,1969年Bowman等2用闪光灯泵浦可调谐染料激光器,获得了589 nm的激光,首次探测到高空大气中的钠原子,开启了大气金属层的探测之门。1970 年,Peterson等9实现了连续波染料激光器的运转,染料激光器的可调谐范围广、输出功率高、吸收和增益容易控制(因为染料浓度容易控制)、可产生连续波、Q开关及超短脉冲输出等优点逐个得到开发,并且得到广泛的应用,从而提升了大气金属层成分密度的探测能力710

以子午工程延庆台站双波长探测激光雷达系统为例,其基本组成包括激光发射、信号接收、信号处理及控制三大部分。图2为延庆双波长探测激光雷达的原理和实物图,激光发射部分包括Nd∶YAG激光器(PL9030)、倍频晶体(SHG;两个)、染料激光器(ND6000:589 nm MW558染料和770 nm LDS765染料)、扩束镜、镀膜全反镜、稳频控制器和带有步进电机的反射棱镜等。Nd∶YAG激光器发出波长为1064 nm的激光,经过第一个倍频晶体后得到532 nm的激光,直接向上发射进行大气瑞利探测,或者通过泵浦染料激光器得到770 nm的激光,可用于钾原子层探测;经过第一个倍频晶体后剩余的1064 nm激光通过第二个倍频晶体,得到532 nm的激光,再通过泵浦另一个染料激光器得到589 nm的激光,可用于钠原子层探测;两束激光分别通过各自的扩束镜调试出合适的发散角和准直度,通过镀膜全反镜垂直射入大气中。整个发射过程中,为了保证探测高度(80 km 以上)和参考高度(30 km)完全进入望远镜视场,需要调整带有步进电机的反射棱镜二维电控平台,精确调整激光发射方向,匹配望远镜接收视场。

图 2. 延庆台站双波长激光雷达方案及实物图14。(a)设计方案;(b)实物图

Fig. 2. Dual-wavelength lidar scheme and object picture in Yanqing station[14]. (a) Design scheme; (b) object picture

下载图片 查看所有图片

信号接收部分包括大口径Cassegrain接收镀膜望远镜(直径为1 m,2018年10月28日更换为1.23 m)、分光镜、窄带滤波片、光电倍增管(PMT)等。接收的光信号经过分光镜后得到两束光,它们分别通过窄带滤光片,保留589 nm和770 nm的有效回波光信号,再通过高灵敏光电倍增管将光信号转化为电信号。

信号采集及控制部分包括前置放大器、光子计数卡(MCS-pci)、延时触发器等。先使用前置放大器对电信号进行匹配滤波、消噪等预处理,得到被放大到一定功率的电信号;再利用光子计数卡把光电子脉冲记录下来,并用回波光子计数值表示信号的大小。可见,信号采集及控制部分控制整个激光雷达系统的时序,保证发射部分、接收部分、采集部分协调运行11-14

对于Nd∶YAG泵浦染料方案,由于染料激光的可调谐范围广(可调谐到钠原子共振吸收谱线)、光谱线宽窄,再加上高空大气中钠原子密度相对较高,后向散射截面较大,因此钠原子探测最先实现,钠层的观测研究范围也最为广泛。具有代表性的一些研究团队的钠原子密度激光雷达的具体参数215-30表1所示,除了Nomura等20、Kawahara等25和Tsuda等26的研究外,其余研究均采用了染料激光器。

根据采集的回波信号,可以通过激光雷达方程反演得到高空大气的金属原子、离子密度。激光雷达方程包括发射项、散射项、接收项、传输项、噪声项5个部分,其中发射项是指单位时间内激光器发射的总光子数,散射项是指单位立体角内光子被后向散射的概率,接收项是指散射的光子被望远镜接收的概率,传输项是指激光在发射到接收过程的衰减,噪声项是指积分时间内的背景噪声。激光雷达方程的一般形式为

Nλ,z=PLλLΔthc/λLβλ,λL,zΔzAz2ηλ,λLTλL,zTλ,zGz+NBΔt

式中:Nλ,z表示在z-z/2,z+z/2高度范围内激光雷达接收的波长为λ的光子数;z表示大气中的散射物到激光雷达接收装置的距离;λ表示回波光子波长;PLλL表示激光雷达的发射功率;λL表示激光雷达发射装置发射光子的波长;Δt表示积分时间;h表示普朗克常量;c表示光速;β表示后向散射系数;Δz表示激光雷达系统的空间分辨率;A表示激光雷达接收望远镜的面积;η表示发射波长为λL、接收波长为λ的激光雷达系统的光学效率;TλL,z表示从激光器到目标物的单程大气透射率;Tλ,z表示从目标物到望远镜的单程大气透射率;Gz表示激光雷达系统的几何参数;NB表示积分时间Δt内的背景噪声。

散射项的后向散射系数β中包含了散射粒子的密度(30~80 km高空大气瑞利散射中该项表示大气密度,80~400 km共振荧光散射中该项表示金属原子密度,随着激光雷达技术的发展,探测上限可能更高)。由于光学效率η、大气透射率T等的测量值每天都有差异,因此直接求解共振荧光散射的金属原子密度非常困难。对于同一台激光雷达接收的不同高度的光子数,受到发射项、接收项的影响基本相同,对于30 km以上的高度,气溶胶很少,受到传输项的影响几乎相同。因此,通常采用30 km作为参考高度zR,将共振荧光散射激光雷达和瑞利散射激光雷达进行比较,消掉不便测量的参数,得到只需考虑散射项的方程。对于散射项,有

βλ,λL,z=idσiλLdΩni(z)pi(λ)

式中:dσiλLdΩ表示粒子i在单位立体角内的散射截面;ni(z)表示散射粒子i在高度z处的数密度;pi(λ)表示在波长λ处光子散射的可能性。瑞利散射为瞬时散射过程,满足λ=λLpiλ=1,所以βλ,λL,z=idσiλLdΩni(z)=σR(π,λ)nR(z),其中σR为瑞利后向散射截面,nR为瑞利高度的大气密度。共振荧光散射满足λ=λLpiλ=RB(λ),所以βλ,λL,z=idσiλLdΩni(z)=σatomλL4πnC(z)RB(λ),其中nC为金属原子的密度,RB为在波长λ处荧光光子散射的可能性。将上述参数代入激光雷达方程,可以得到金属原子的密度13nCz=NSλ,z-NBtNRλ,z-NBt×z2zR2×4πσR(π,λ)nR(z)σatom(λ)RB(λ) ,其中NS为高度z处的回波光子数,NR为高度ZR处的回波光子数。

对高空钙原子/离子、镍原子的探测也主要采用染料激光雷达。1985年,Granier等31首次报道了法国Observatoire de Haute Provence(44°N,6°E)台站1983—1984年14个夜晚的钙原子和钙离子的同时观测结果,钙原子柱丰度没有呈现系统的季节变化,而钙离子并不是每次都能探测到。2000年,Gerding等32报道了德国Kühlungsborn(54°N,12°E)台站1996年12月至1998年12 月钙原子在112个夜晚和钙离子在58个夜晚的观测结果,钙原子的柱丰度为2.1×107 cm-2,平均峰值密度为22 cm-3,在90 km以上,钙离子占主导地位,平均柱丰度为 4.9×107 cm-2,钙原子数密度呈现10月最大、6月次大的显著特征,钙离子每晚几乎都有密度较大的突发层,季节变化的时空尺度较小,9—11月在90~95 km出现峰值,但5—6月和 7—8月在100 km高度以上的两个奇特的密度极大值,可能受到8月的英仙座(进入速度为60 km/s)、10月的猎户座(进入速度为66 km/s)和11月的狮子座(进入速度为71 km/s)流星雨的影响。部分代表性研究团队测量的钙原(离)子激光雷达的具体参数31-40表2所示,其中前6项研究均采用染料激光器获得423 nm/393 nm的激光。

镍原子数密度低、散射截面小,其信号比钠信号低约4个量级,因此镍原子是大气金属层里比较难探测的成分。2015年,Collins等41率先报道了镍原子的探测结果,但是他们探测的镍原子数密度比大气金属层模型的估计结果高了2个量级,因此该探测结果对大气金属层的基本物理过程提出了挑战。2018年,德国Gerding等42进行了数次镍原子探测实验,发现镍原子数密度为280~450 cm-3,与大气金属层模型的模拟结果接近。在Plane等的建议下,延庆台站利用染料激光器搭建了镍激光雷达系统,于2018年开始镍原子的探测研究,发现镍原子数密度的总体平均值为(258±115)cm-3,与模型的模拟结果基本一致43。后来又给出了镍原子数密度随季节变化的探测结果,并与大气金属层模型的模拟结果进行对比,发现镍原子层的最大原子数密度(460 cm-3)出现在冬季,最小原子数密度出现在夏季(98 cm-344

3 和频方案:进一步提升激光发射能量

采用染料激光与YAG激光和频,进一步拓展了染料激光器的输出波长范围,实现更宽波段、更高效率的激光输出。大气金属成分的荧光波长大多在紫外波段,相比于通常采用的染料激光器先输出红外激光再倍频到紫外波段,和频方案由于与大功率的YAG激光和频,有着能量更高、光斑更好的优点,进一步提升了金属层激光雷达的探测灵敏度。

1989年,Granier等45首次报道了将Nd∶YAG激光器输出激光倍频后(532 nm)和染料激光器输出的572 nm激光通过KDP晶体和频得到372 nm的激光,在法国Observatoire de Haute Provence(44°N,6°E)台站观测到铁原子层。随后,美国Kane和Gardner46在Urbana(40°N)、Raizada等47在 Arecibo(18°N)、Gardner等48在South Pole(90°S)分别给出了铁原子数密度的季节变化。Gardner 等49利用南极Rothera(67.5°S,68.0°W)台站2002年至2005年3月的观测数据,总结出铁原子数密度在4月极大、10月次之,其他月份较小的变化规律,并基于其他台站不同的季节变化特征,通过改进流星输入函数、环境温度的季节变化特征、引力波的垂直输运,以及对PMC冰晶、烟尘的不均匀吸收,建立了和观测结果相吻合的模型。

2009年,Yi等50也基于染料和频方案搭建了国内首台铁原子玻尔兹曼激光雷达,实现了铁原子数密度和中层顶区域温度的探测。具有代表性的一些研究团队的铁原子激光雷达的具体参数224547-4850表3所示。

表 3. 铁原子激光雷达参数

Table 3. Iron atom lidar parameters

Research group(Year)Geographical locationPulse energy /mJTelescope diameter /mRef.
Granier et al.(1989)FranceObservatoire de Haute Provence(44°N,6°E)150.8[45]
Chu et al.(2002)the North and South Poles100/(aperture area:0.13 m2)[48]
Raizada et al.(2002)USAArecibo(18.3°N,66.7°W)/0.8[47]
Shibata et al.(2006)IndonesiaKototabang(0.2°S,100.3°E)130.45[22]
Yi et al.(2009)ChinaWuhan(30.5°N,114.3°E)401[50]

查看所有表

4 染料脉冲放大方案:揭开中高层大气风温面纱

脉冲染料激光器(PDL)在大气金属层原子数密度探测中发挥了极为重要的作用,然而,脉冲染料激光器由单/双光栅组成振荡腔,输出激光为多模宽线宽(GHz)激光,其中心频率的抖动较大,难以满足金属层风温探测对高光谱分辨激光的要求。脉冲染料放大器(PDA)利用染料作为工作物质,直接将单模连续光种子激光放大成高功率脉冲激光,满足了金属层风温探测光谱分辨率高和中心频率稳定性好的双重要求。

早在1967年,Soffer等51发现利用衍射光栅作为腔反射器,既可以压窄输出激光线宽,还能提高转换效率。1970年,IBM公司的Huth52将罗丹明6G染料溶于乙醇溶液中,在21.5 J的泵浦能量下获得了55 mJ的输出激光,证实了脉冲染料放大的可行性。此后,法国巴黎综合理工学院的Flamant等53采用六级闪光灯进行泵浦,获得了700倍放大增益,并实现了波长可调谐激光输出。1972年,Hänsch54利用高光谱分辨率光栅、长腔镜、光束准直镜以及腔内标准具等线宽压窄措施,获得了线宽小于0.4 pm的窄线宽脉冲染料激光。1974年,斯坦福大学的Wallenstein等55采用氮激光器作为泵浦光源,利用腔内标准具以及衍射光栅等波长精密选择器件实现了约25 MHz超窄线宽的脉冲激光输出。此后,美国Bölger等56、意大利 Burlamacchi等57和法国 Pinard等58利用闪光灯泵浦激光器泵浦连续光种子激光光源,实现了对连续光的脉冲放大。从此,脉冲染料放大激光器产生的窄线宽激光在原子分子光谱、激光医疗、激光雷达等方面得到了极为广泛的应用。

1985年,Fricke 等59利用脉冲染料放大器获得高峰值功率窄线宽589 nm脉冲激光,激发金属层钠原子D2线超精细结构,通过扫描钠原子光谱线实现了钠原子层大气温度的探测。1990年,美国科罗拉多大学的She等60通过将连续光种子激光锁频到钠原子共振谱线,并对其脉冲染料进行放大,获得高频率稳定度、窄线宽的589 nm激光,并通过双频机制实现了钠层绝对温度的测量,温度精度优于3 K。1994年,She等61再次利用三频激发原子共振谱线的方式,实现了80~110 km大气风场和温度的同时快速准确探测,为钠层风温探测提供了高效可行的新思路。1996年,She课题组62采用钠原子滤光器实现了钠层荧光的全天时探测。She课题组的三频钠风温同时探测方案被国际同行广泛采用,此外美国 Illinois大学、Utah State 大学等,以及挪威ALMOR、南极McMurdo等台站先后建设了钠风温激光雷达,在中层顶区域的化学与动力学过程等研究方面取得了非常多的研究成果。国内的中国科学院国家空间科学中心、中国科学技术大学、中国极地研究中心等单位采用上述三频切换染料放大技术,相继实现了钠风温的同时探测63-67。中国极地研究中心牵头建设的南极首台钠风温激光雷达获得了大量高质量、高价值的数据。中国科学院精密测量科学与技术创新研究院结合光纤AOM、光线开关、光纤拉曼放大等技术,实现了更加鲁棒的钠风温激光雷达系统。子午工程二期兰州和乌鲁木齐两个台站的中高层风温激光雷达系统方案如图3所示,为实现对钠层风场和温度的同时测量,其发射激光部分采用脉冲染料放大激光器,实现了589 nm连续单模激光到脉冲激光的放大,在泵浦激光能量为200 mJ的情况下,获得了大约40 mJ的589 nm脉冲激光,为钠层风温探测提供了稳定有效的染料激光放大方案68-70

图 3. 子午工程中高层风温激光雷达设计方案及实物图。(a)设计方案;(b)实物图

Fig. 3. Design scheme and object picture of wind and temperature simultaneous measurement lidar in the middle and upper level for Meridian Project. (a) Design scheme; (b) object picture

下载图片 查看所有图片

5 发展窄带滤光技术:将激光雷达探测从夜间拓展至全天时

由于白天的强烈太阳光对激光雷达是一种严重的背景光干扰,白天天空的背景光噪声比夜间高4~5个数量级,因此传统大气金属层激光雷达主要是在晴朗的夜空探测的,国际上的全天时大气金属层激光雷达探测结果很少。要实现白天强背景光噪声下的共振荧光激光雷达微弱回波信号的提取,必须采用小收发视场配合超窄带宽滤光方式来抑制回波信号的噪声。对于白天观测激光雷达而言,目前常用的超窄带宽滤光方式以标准具(或干涉仪)滤光和原子滤光两种方式为主。标准具滤光具有滤光波长和带宽均可调的优势,已经在很多激光雷达台站得到应用。原子滤光是基于原子的共振跃迁与磁致旋光实现对波长的精准选择,具有中心频率自稳定的特点,因此原子滤光中心波长与原子共振波长完全匹配,共振跃迁波长外的波长完全被滤掉,波长选择有限。

1982年,Granier和Megie71借助高分辨光谱仪实现了钠层激光雷达的白天观测。1987年,美国Illinois 大学的Kwon和Gardner等72借助法布里-珀罗(F-P)标准具实现了钠层激光雷达的全天时观测,并利用钠层密度数据研究了中层顶大气潮汐对钠层密度的调制作用。2001年,Franke等73又研制了基于窄带激光技术的白天钠层测风激光雷达。1996年,美国Colorado 大学的Chen等67采用法拉第滤光器技术成功研制出可以在白天观测的钠层测温激光雷达。2003年,美国Colorado大学的She等74报道了长达80 h的钠层温度和风场连续观测结果,分析了中层顶大气潮汐频率扰动结果,并和大气模式的研究结果进行了对比。此外,Diettrich等75-77研发的在南极McMurdo台站(77.8°S,166.7°E)的铁原子玻尔兹曼测温激光雷达,也实现了白天探测的功能。

在国内,中国科学院精密测量科学与技术创新研究院(原武汉物理数学所)激光雷达团队利用自主研发的原子滤光技术,于2006年首次在国内实现了钠层密度的白天探测78;应用该原子滤光技术,于2014年在延庆台站也实现了钠层密度的白天探测,获得了信噪比非常好的白天钠层信号,并发现了高度低达75 km的白天钠层79。2019年,该团队进一步研制出全天时探测所需的组合型多峰原子滤光器,并应用到南极的钠层风温激光雷达,制备出南极首台钠风温同时探测激光雷达;在国家自然科学基金国家重大科研仪器研制项目的资助下,本团队在延庆台站建成了基于激光和频方案的全固态大功率589 nm激光发射系统,实现了高空钠层密度、温度、风场的激光雷达全天时同时探测,这也是目前唯一一台能在白天进行大气金属层风温密探测的固体激光雷达,实物如图4所示。

图 4. 全固态风温激光雷达全天时观测实物图

Fig. 4. Object pictures of all solid-state wind-temperature lidar realizing all-sky observation

下载图片 查看所有图片

6 固体激光发射方案:大气金属层激光雷达探测的未来发展方向

目前国际上大气金属层激光雷达的主流方案仍然是染料激光发射方案,但是除了589 nm激光染料的效率比较高之外,其他大气金属成分对应的波长都存在染料效率较低、寿命有限、流速不均等问题,影响光斑的形状、光束质量。此外,染料激光器普遍存在需要频繁更换染料、难以实现很高的单脉冲能量等缺点,这大大限制了对金属层微弱成分的探测能力。固体激光发射技术近年来发展迅速,具有能量高、稳定可靠、光束质量好等优点,在大气金属层激光雷达探测领域的应用越来越多。

1996年,von Zahn等80研制出一台全固态钾层测温激光雷达,基于紫翠宝石环形激光器,由激光二极管注入种子获得770 nm的激光,探测了钾层密度和大气温度的初步观测结果;1998年,Eska等81利用上述钾层激光雷达对德国Kühlungsborn(54°N,12°E)上空的钾层进行了持续一年的观测,得出钾层的年平均柱密度为4.4×107 cm-2,并呈现冬夏大、春秋小的季节变化特征。由于这台全固态激光雷达体积小、便于运输,他们将其安装到德国的科考船Polarstem上,随船对54°N和71°S之间的钾层进行观测,发现钾原子数密度随着纬度的增加逐渐降低,并建立了第一个钾层模型82。此后,Fricke-Begemann和Höffner83分别对低纬地区Tenerife(28°N)和高纬地区Spitsbergen(78°N)上空的钾原子层和大气温度进行了详细的报道。2002年,Friedman等84同样利用种子注入的紫翠宝石激光器观测了 Arecibo Observatory(18.35°N,66.75°W)的季节变化特征。采用前文介绍的双波长方案,本团队在北京延庆台站和巴西台站搭建了钾原子激光雷达,采用染料激光器获得770 nm的激光。Wang等85基于北京延庆台站两年共220个夜间的观测数据,得出钾原子数密度呈现冬季极大、夏季次大、春秋较小的季节变化特征。Andrioli等86利用巴西钾激光雷达的数据,获得巴西低纬地区的钾原子数密度随季节变化的平均特性、突发特征等。具有代表性的一些研究团队的钾原子激光雷达的具体参数3080828487表4所示。

Chu等77在南极McMurdo台站(77.8°S,166.7°E)建设了首台铁原子玻尔兹曼激光雷达,成功实现了铁原子数密度及温度的探测(具体参数见表3)。他们采用紫翠玉宝石激光器倍频输出372 nm/374 nm激光的方案,该系统包含两台激光发射器和两台光接收器。每台激光发射器都包含一台注入种子、倍频、闪光灯泵浦紫翠宝石激光器,具有全天时探测功能。利用这台激光雷达,Chu等48-4977在南极的南极点、Rothera站、McMurdo站开展了长期的铁原子数密度与温度探测,并取得了许多有价值的研究成果。2017年,Kaifler等88使用1116 nm Nd∶YAG激光器三倍频产生372 nm激光,获得了铁原子的荧光散射信号,实现了铁原子数密度的探测。Li等89进一步提出利用YAG激光器来实现铁原子多普勒测温测风的方案,并对探测结果进行了模拟研究。

近年来,全固态钠原子测风测温激光雷达方案的应用,进一步提升了激光雷达的探测能力2002年,钠层风温激光雷达的发明者She又提出了利用YAG激光器和频来建设全固态589 nm钠风温激光发射系统的方案:将1064 nm 和1319 nm Nd∶YAG激光通过双色镜实现共轴传输,然后在非线性晶体中和频可以产生与钠D2线相对应的589 nm钠激光输出。根据She的方案,巴西国家空间研究院与日本信州大学分别开展了能实现钠原子多普勒探测的全固态激光发射系统的研究。巴西Clemesha团队90-91利用YAG和频技术建立了全固态窄带589 nm激光雷达系统,实现了80~100 km大气温度的观测。日本信州大学也在南极和挪威分别建设了类似的系统,并于2010年报道了80~100 km大气温度的探测结果92-93(具体参数见表1)。在巴西方案基础上进行优化改造,本团队在延庆台站建成更为稳定可靠的全固态窄带589 nm激光雷达系统,实现了钠层温度的探测94-95;在该系统中加入自主研发的全光纤移频与稳频装置,在国际上率先报道了钠层风温密的全固态激光雷达探测结果61。同年,日本信州大学也报道了钠层风温密的全固态激光雷达探测结果93。以延庆台站全固态钠层风温密同时探测激光雷达为例,原理图和实物图如图5所示,基本组成包括种子注入激光部分、脉冲和频部分、光束发射和接收部分以及检测控制部分95。利用种子注入技术,将波长分别为1064 nm和1319 nm的窄线宽单模连续激光器作为两台Nd∶YAG脉冲激光器的种子激光源,并设计了全光纤移频与稳频装置,实现激光频率的长期锁定和发射激光的三频切换。3个不同工作频率的1064 nm激光通过光纤开关轮流输出并循环注入到1064 nm Nd∶YAG脉冲激光器中,没有经过频移的1319 nm种子激光则直接通过光纤传输到1319 nm Nd∶YAG脉冲激光器中,两束脉冲激光分别经过一组9 mm长的激光放大级后,通过一个磷酸氧钛钾(KTiOPO4)晶体和频,生成分别在ν0ν0+585 MHz和ν0-585 MHz(ν0为峰值频率)3个工作频率的高功率窄线宽589 nm激光脉冲。将和频生成的589 nm脉冲激光束分成3束,分别指向3个不同的方向:一束垂直指向天顶角方向,用来测量温度并对垂直风场进行监测,以校准视向风速测量结果;另外两束分别指向东边和北边,并偏离天顶角30°,用来进行水平风场的探测。为了同时测量大气三维风场和温度,采用三方向同时发射、同时接收的方式。将望远镜接收的光通过光纤传输到检测单元,待回波光准直后,采用带宽为1 nm的窄带滤光片对其进行滤光,并聚焦到高灵敏光电倍增管,从而将激光雷达回波光信号转换成电信号输出,最后通过数据采集和系统控制单元实现三方向三频率的光子计数采集、存储、显示、激光频率控制及整机时序控制。

表 4. 钾原子激光雷达参数

Table 4. Potassium atom lidar parameters

Research group(Year)Geographical locationPulse energy /mJTelescope diameter /mRef.
von Zahn and Höffner(1996)GermanJuliusru(54.5°N,13.4°E)1000.8[80]
Eska et al.(1999)GermanKühlungsborn(54°N,12°E)1500.8[82]
Friedman et al.(2002)USAArecibo(18.3°N,66.7°W)1000.8[84]
Jiao et al.(2017)ChinaBeijingYanqing(40.5°N,116.0°E)451.0[87]
Andrioli et al.(2020)BrazilSão José dos Campos(23.1°S,45.9°W)831.0[30]

查看所有表

图 5. 延庆台站风温密同时探测激光雷达的设计方案及实物图95。(a)设计方案;(b)实物图

Fig. 5. Design scheme and object picture of wind, temperature, and density simultaneous detection laser at Yanqing station[95]. (a) Design scheme; (b) object picture

下载图片 查看所有图片

钠原子随着温度变化会出现共振荧光谱线的多普勒增宽,钠原子随大气风场的定向移动会引起钠共振荧光的多普勒频移96。因此,用中心频率为ν0ν0+585 MHz和ν0-585 MHz的3束激光同时探测钠原子层,接收的信号变化记录了光谱增宽和多普勒频移量的变化,从而可以得到大气温度和风场的信息。温度比和风速比可表示为

RT=σπν+,T,V+σπν-,T,V2σπν0,T,V=Nν++Nν-2Nν0RV=σπν+,T,V-σπν-,T,Vσπν0,T,V=Nν+-Nν-Nν0

式中:σπ为钠荧光光谱不同频率后向散射截面;ν0为D2a峰值频率;ν+ν-为两个侧翼频率,该激光雷达的侧翼频率分别为ν0+585 MHz和ν0-585 MHz;Nν+Nν-Nν0分别为这3个频率对应的回波光子数。利用散射截面可以计算出理论上温度比、风速比的二维校正曲线,根据实验测得的在不同频率下接收的光子温度比和风速比,通过搜索校正曲线,可以确定大气的温度和风场(图6)。

图 6. 温度风场探测原理及反演方法13。(a)(b)钠荧光光谱随温度和风速的变化;(c)温度比、风速比的二维校正曲线

Fig. 6. Temperature and wind detection principle and inversion method[13]. (a)(b) Variation of sodium fluorescence spectra with temperature and wind speed; (c) two dimensional correction curves of temperature ratio and wind speed ratio

下载图片 查看所有图片

近年来,本团队与南京先进激光技术研究院、中国科学院上海光学精密机械研究所合作,研发了基于半导体泵浦的全固态589 nm激光发射系统。该系统采用无谐振腔YAG直接放大技术与Ram and fire技术,有效克服了钠层风温激光雷达系统中普遍存在的chirp效应。

2021年,Li等97首次给出了电光调制的伪随机调制连续波(PMCW)钠测温测风激光雷达的设计方案及探测结果,窄带589 nm连续波激光器PMCW激光雷达传输系统更简单、更稳定,实现了超窄带宽、全固态、体积紧凑等功能。

7 OPO激光器:延伸高空大气探测上限

可调谐激光器除了应用广泛的染料激光器、和频激光器,还有OPO激光器。OPO激光器集成化程度高、泵浦光光斑好、单脉冲能量高,对大气成分的探测能力得到进一步提升,近期已观测到高达300 km的钙离子层。

OPO激光器是利用光参量振荡与放大技术,将固定波长的光转化为新波长的可调谐固态光源。本团队与中国科学院大连化学物理研究所合作,建成首台采用OPO激光技术的金属层激光雷达,实现了金属钙原子、离子的同时探测。相较于国际上普遍采用的染料激光器,OPO激光器具有能量高、线宽窄、光束质量好等优点,极大地提高了激光雷达的探测能力。该系统的探测阈值远远优于国际上的同类设备,利用该系统发现了被前人忽略的背景钙离子层,并且用激光雷达首次探测到高达300 km的钙离子层40。观测到的热层-电离层Ca+(TICa+层)的剖面可达300 km左右,达到F区峰值以上。激光雷达记录了TICa+层从开始到结束的完整演化过程:Ca+在午夜前或午夜从位于约110 km的强突发Ca+层中上升,并进入F区,形成约300 km的TICa+层,TICa+层以不同的垂直传输速度上下移动;午夜后2~3 h,TICa+层迅速下降,最终在约140 km处与另一个突发E层合并。这样的激光雷达观测直接延伸了高空大气探测上限,为探索离子传输、E区和F区耦合规律与中纬度电离层的不规则性打开了一扇新窗口。

近年来,国内的OPO激光器技术发展迅速,纷纷被用于多台中高层大气激光雷达。由中国科学技术大学负责建设的子午二期海南激光雷达采用OPO技术来建设激光发射系统,将实现高达1000 km氦原子探测;本团队正在建设的子午二期漠河激光雷达,也包含多台OPO激光器。其中已经建成的423 nm激光器(用于钙原子探测)的单脉冲能量达到120 mJ。以上固体激光技术的发展,为未来金属层星载激光雷达探测奠定了坚实的基础。

8 结 语

大气金属层所处的中间层和低热层(MLT)区域对下方向上传播的大气波动和动力驱动以及上方的太阳辐射和高能粒子沉降都很敏感,对于人类活动引起的气候变化的响应也受到越来越多的关注。中高层大气的冷却将引起重力波动、行星波动和潮汐的长期变化,从而影响整个大气环流。1989年Roble和Dickinson98通过模型预测了CO2含量翻倍将引起全球中间层平均温度下降10 K,增加的温室气体在平流层增温,在中间层会作为辐射制冷器。其他的驱动包括平流层臭氧的消耗、大气动力学的变化、太阳和地磁活动的变化以及地球磁场的变化等。太阳活动是另一个引起MLT区域变化的主要源,因此,开展大气金属层长期、稳定的观测与研究,一方面可以表征中高层大气对于太阳活动的响应,另一方面可以表征中高层大气对于低层大气的响应。

本文以激光器发展历程为主线,重点介绍了激光雷达技术的发展带来的大气金属层地基探测研究进展。对于金属层的焦点科学问题(如金属层突发、重力波活动、热层金属层起源、金属层模拟研究等)并未开展深入研究。

随着调Q、倍频、调谐、高功率光纤器件等技术的发展,激光器的脉冲能量、稳定性、操作方便性都在不断提升。近年来,从单一大气成分密度探测到多成分密度同时探测,再到大气密度、温度、风场同时探测,国内外多功能、高分辨率、高探测精度的激光雷达不断被研究、被应用。未来,自动化、智能化的激光雷达研制与应用将促进星载激光雷达的发展,其与地基激光雷达相配合,更多成分离子的探测将成为可能,为更高范围的温度和风场探测提供支撑,将推动对高空大气化学物理过程的认知及电离层不同区域的耦合研究。

参考文献

[1] PlaneJ M C, FengW H, DawkinsE C M. The mesosphere and metals: chemistry and changes[J]. Chemical Reviews, 2015, 115(10): 4497-4541.

[2] BowmanM R, GibsonA J, SandfordM C W. Atmospheric sodium measured by a tuned laser radar[J]. Nature, 1969, 221(5179): 456-457.

[3] 尤崴, 杨学宗, 陈卫标, 等. 589 nm激光钠导星技术研究综述[J]. 光电技术应用, 2021, 36(5): 1-14, 22.

    You W, Yang X Z, Chen W B, et al. Review of 589 nm sodium laser guide stars[J]. Electro-Optic Technology Application, 2021, 36(5): 1-14, 22.

[4] 狄慧鸽, 华灯鑫. 云探测中的激光雷达技术研究进展[J]. 光学学报, 2022, 42(6): 0600002.

    Di H G, Hua D X. Research progress of lidar in cloud detection[J]. Acta Optica Sinica, 2022, 42(6): 0600002.

[5] 龚威, 史硕, 陈博文, 等. 机载高光谱激光雷达成像技术发展与应用[J]. 光学学报, 2022, 42(12): 1200002.

    Gong W, Shi S, Chen B W, et al. Development and application of airborne hyperspectral LiDAR imaging technology[J]. Acta Optica Sinica, 2022, 42(12): 1200002.

[6] 李发泉, 程学武, 杨勇, 等. 高空钠激光导星的制备与成像研究[J]. 中国科学: 物理学 力学 天文学, 2011, 41(11): 1261-1267.

    Li F Q, Cheng X W, Yang Y, et al. Research on preparation and imaging of upper atmosphere sodium laser guide star[J]. Scientia Sinica: Physica, 2011, 41(11): 1261-1267.

[7] F.P.舍费尔. 染料激光器[M]. 陈昌民, 译. 北京: 科学出版社, 1987.

    SchaferF P. Dye lasers Springer-verlag[M]. Chen C M, Transl. Beijing: Science Press, 1987.

[8] SorokinP P, LankardJ R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163.

[9] PetersonO G, TuccioS A, SnavelyB B. CW operation of an organic dye solution laser[J]. Applied Physics Letters, 1970, 17(6): 245-247.

[10] 邹玉林, 吴敬朋, 臧竞存, 等. 染料激光器研究现状及进展[EB/OL]. [2023-02-03]. https://wenku.baidu.com/view/04e5255e3b3567ec102d8ab7?fr=xueshu&_wkts_=168869624 6934.

    ZouY L, WuJ P, ZangJ C, et al. Research status and progress of dye lasers[EB/OL]. [2023-02-03]. https://wenku.baidu.com/view/04e5255e3b3567ec102d8ab7?fr=xueshu&_wkts_=16886 96246934.

[11] 程学武, 杨国韬, 杨勇, 等. 高空钠层、钾层同时探测的激光雷达[J]. 中国激光, 2011, 38(2): 0214001.

    Cheng X W, Yang G T, Yang Y, et al. Na layer and K layer simultaneous observation by lidar[J]. Chinese Journal of Lasers, 2011, 38(2): 0214001.

[12] 程学武, 宋娟, 李发泉, 等. 双波长高空探测激光雷达技术[J]. 中国激光, 2006, 33(5): 601-606.

    Cheng X W, Song J, Li F Q, et al. Dual-wavelength high altitude detecting lidar technology[J]. Chinese Journal of Lasers, 2006, 33(5): 601-606.

[13] 荀宇畅. 中纬度热层钠层的激光雷达观测与研究[D]. 北京: 中国科学院国家空间科学中心, 2018.

    XunY C. Lidar observation and study of sodium layer in mid-latitude thermosphere[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2019.

[14] 王泽龙. 北京上空钾层的激光雷达观测与研究[D]. 北京: 中国科学院国家空间科学中心, 2017.

    WangZ L. Lidar observation and research of potassium layer over Beijing[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2017.

[15] HakeR D, Jr, ArnoldD E, JacksonD W, et al. Dye-laser observations of the nighttime atomic sodium layer[J]. Journal of Geophysical Research, 1972, 77(34): 6839-6848.

[16] MegieG, BlamontJ E. Laser sounding of atmospheric sodium interpretation in terms of global atmospheric parameters[J]. Planetary and Space Science, 1977, 25(12): 1093-1109.

[17] SimonichD M, ClemeshaB R, KirchhoffV W J H. The mesospheric sodium layer at 23°S: nocturnal and seasonal variations[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A4): 1543-1550.

[18] RichterE S, RowlettJ R, GardnerC S, et al. Lidar observation of the mesospheric sodium layer over Urbana, Illinois[J]. Journal of Atmospheric and Terrestrial Physics, 1981, 43(4): 327-337.

[19] JuramyP, ChaninM L, MégieG, et al. Lidar sounding of the mesospheric sodium layer at high latitude[J]. Journal of Atmospheric and Terrestrial Physics, 1981, 43(3): 209-215.

[20] NomuraA, KanoT, IwasakaY, et al. Lidar observations of the mesospheric sodium layer at Syowa Station, Antarctica[J]. Geophysical Research Letters, 1987, 14(7): 700-703.

[21] GardnerC S. Sodium resonance fluorescence lidar applications in atmospheric science and astronomy[J]. Proceedings of the IEEE, 1989, 77(3): 408-418.

[22] ShibataY, NagasawaC, AboM, et al. Lidar observations of sporadic Fe and Na layers in the mesopause region over equator[J]. Journal of the Meteorological Society of Japan Ser II, 2006, 84A: 317-325.

[23] PrasanthP V, SridharanS, KumarY B, et al. Lidar observations of sporadic Na layers over Gadanki (13.5°N,79.2°E)[J]. Annales Geophysicae, 2007, 25(8): 1759-1766.

[24] PfrommerT, HicksonP. High-resolution mesospheric sodium observations for extremely large telescopes[J]. Proceedings of SPIE, 2010, 7736: 773620.

[25] KawaharaT D, KitaharaT, KobayashiF, et al. Sodium temperature lidar based on injection seeded Nd∶YAG pulse lasers using a sum-frequency generation technique[J]. Optics Express, 2011, 19(4): 3553-3561.

[26] TsudaT T, NozawaS, KawaharaT D, et al. Fine structure of sporadic sodium layer observed with a sodium lidar at Tromsø, Norway[J]. Geophysical Research Letters, 2011, 38(18): L18102.

[27] GongS S, YangG T, WangJ M, et al. A double sodium layer event observed over Wuhan, China by lidar[J]. Geophysical Research Letters, 2003, 30(5): 1209.

[28] YiF, ZhangS D, ZengH J, et al. Lidar observations of sporadic Na layers over Wuhan (30.5°N, 114.4°E)[J]. Geophysical Research Letters, 2002, 29(9): 59-4.

[29] DouX K, XueX H, ChenT D, et al. A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8°N, 117.3°E)[J]. Annales Geophysicae, 2009, 27(6): 2247-2257.

[30] AndrioliV F, XuJ, BatistaP P, et al. Nocturnal and seasonal variation of Na and K layers simultaneously observed in the MLT region at 23°S[J]. Journal of Geophysical Research: Space Physics, 2020, 125(3): JA027164.

[31] GranierG, JégouJ P, MégieG. Resonant lidar detection of Ca and Ca+ in the upper atmosphere[J]. Geophysical Research Letters, 1985, 12(10): 655-658.

[32] GerdingM, AlpersM, von ZahnU, et al. Atmospheric Ca and Ca+ layers: midlatitude observations and modeling[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A12): 27131-27146.

[33] GardnerC S, KaneT J, SenftD C, et al. Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: three case studies[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D9): 16865-16873.

[34] QianJ, GardnerC S. Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profiles at Urbana, Illinois[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D4): 7453-7461.

[35] AlpersM, H?fffnerJ, von ZahnU. Upper atmosphere Ca and Ca+ at mid-latitudes: first simultaneous and common-volume lidar observations[J]. Geophysical Research Letters, 1996, 23(5): 567-570.

[36] TepleyC A, RaizadaS, ZhouQ H, et al. First simultaneous observations of Ca+, K, and electron density using lidar and incoherent scatter radar at Arecibo[J]. Geophysical Research Letters, 2003, 30(1): 91-94.

[37] RaizadaS, TepleyC A, JanchesD, et al. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(6/7/8/9): 595-606.

[38] YiF, ZhangS D, YuC M, et al. Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 102: 172-184.

[39] EjiriM K, NakamuraT, TsudaT T, et al. Observation of synchronization between instabilities of the sporadic E layer and geomagnetic field line connected F region medium-scale traveling ionospheric disturbances[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4627-4638.

[40] JiaoJ, ChuX Z, JinH, et al. First lidar profiling of meteoric Ca+ ion transport from ∼80 to 300 km in the midlatitude nighttime ionosphere[J]. Geophysical Research Letters, 2022, 49(18): GL100537.

[41] CollinsR L, LiJ, MartusC M. First lidar observation of the mesospheric nickel layer[J]. Geophysical Research Letters, 2015, 42(2): 665-671.

[42] GerdingM, DalyS, PlaneJ M C. Lidar soundings of the mesospheric nickel layer using Ni(3F) and Ni(3D) transitions[J]. Geophysical Research Letters, 2018, 46(1): 408-415.

[43] WuF J, ZhengH R, YangY, et al. Lidar observations of the upper atmospheric nickel layer at Beijing (40∘N, 116∘E)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260: 107468.

[44] JiaoJ, FengW, WuF, et al. A Comparison of the midlatitude nickel and sodium layers in the mesosphere: observations and modeling[J]. Journal of Geophysical Research: Space Physics, 2022, 127(2): JA030170.

[45] GranierC, JegouJ P, MegieG. Iron atoms and metallic species in the Earth′s upper atmosphere[J]. Geophysical Research Letters, 1989, 16(3): 243-246.

[46] KaneT J, GardnerC S. Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitudes. JGR: Atmospheres, 1993, 98(D9): 16875-16886.

[47] RaizadaS, TepleyC A. Iron Boltzmann lidar temperature and density observations from Arecibo: an initial comparison with other techniques[J]. Geophysical Research Letters, 2002, 29(12): 1-4.

[48] ChuX Z, PanW L, GardnerC S, et al. Fe Boltzmann temperature lidar: design, error analysis, and initial results at the north and south poles[J]. Applied Optics, 2002, 41(21): 4400-4410.

[49] GardnerC S, ChuX Z, EspyP J, et al. Seasonal variations of the mesospheric Fe layer at Rothera, Antarctica (67.5°S, 68.0°W)[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D2): D02304.

[50] YiF, YuC M, ZhangS D, et al. Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30°N[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D1): D01301.

[51] SofferB H, McFarlandB B. Continuously tunable, narrow-band organic dye lasers[J]. Applied Physics Letters, 1967, 10(10): 266-267.

[52] HuthB G. Direct gain measurements of an organic dye amplifier[J]. Applied Physics Letters, 1970, 16(4): 185-188.

[53] FlamantP, MeyerY H. Absolute gain measurements in a multistage dye amplifier[J]. Applied Physics Letters, 1971, 19(11): 491-493.

[54] H?nschT W. Repetitively pulsed tunable dye laser for high resolution spectroscopy[J]. Applied Optics, 1972, 11(4): 895-898.

[55] WallensteinR, H?nschT W. Linear pressure tuning of a multielement dye laser spectrometer[J]. Applied Optics, 1974, 13(7): 1625-1628.

[56] B?lgerB, BaedeL, GibbsH M. Production of 300 W, nanosecond, transform limited optical pulses[J]. Optics Communications, 1976, 19(3): 346-349.

[57] BurlamacchiP, SalimbeniR. Spectral narrowing of a flashlamp-pumped, waveguide dye laser by amplification of tunable narrow-band cw radiation[J]. Optics Communications, 1976, 17(1): 6-10.

[58] PinardJ, LibermanS. A frequency locked, single mode pulsed dye laser. Application to single frequency tunable UV generation[J]. Optics Communications, 1977, 20(3): 344-346.

[59] FrickeK H, von ZahnU. Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar[J]. Journal of Atmospheric and Terrestrial Physics, 1985, 47(5): 499-512.

[60] SheC Y, LatifiH, YuJ R, et al. Two-frequency Lidar technique for mesospheric Na temperature measurements[J]. Geophysical Research Letters, 1990, 17(7): 929-932.

[61] SheC Y, YuJ R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region[J]. Geophysical Research Letters, 1994, 21(17): 1771-1774.

[62] ChenH, WhiteM A, SheC Y, et al. Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver[J]. Optics Letters, 1996, 21(15): 1093-1095.

[63] HuX, YanZ A, GuoS Y, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 56(4): 417-423.

[64] LiT, FangX, LiuW, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.

[65] 夏媛, 王泽龙, 程学武, 等. 全固态窄带钠层荧光激光雷达系统及初步观测结果[J]. 中国激光, 2015, 42(s1): s113003.

    Xia Y, Wang Z L, Cheng X W, et al. All-solid-state narrowband sodium lidar system and preliminary result[J]. Chinese Journal of Lasers, 2015, 42(s1): s113003.

[66] XiaY, DuL F, ChengX W, et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 2017, 25(5): 5264-5278.

[67] ChenX C, HuangW T, BanC, et al. Dynamic properties of a sporadic sodium layer revealed by observations over Zhongshan, Antarctica: a case study[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): JA029787.

[68] 汪为, 程学武, 刘林美, 等. 兰州台榆中站中高层风温激光雷达技术与初步观测结果[J]. 导航与控制, 2022, 21(S2): 250-257, 249.

    Wang W, Cheng X W, Liu L M, et al. Lidar technology and preliminary observation results of wind temperature in the middle and upper atmosphere at Lanzhou Yuzhong Station[J]. Navigation and Control, 2022, 21(S2): 250-257, 249.

[69] YangY L, YangY, XiaY A, et al. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature lidar in Tibet, China[J]. Optics Express, 2018, 26(13): 16226-16235.

[70] 闫文兵, 杨勇, 季凯俊, 等. 多通道单脉冲激光能量变化监测方法[J]. 中国激光, 2020, 47(12): 1201004.

    Yan W B, Yang Y, Ji K J, et al. Multichannel single-pulse laser energy monitoring methodology[J]. Chinese Journal of Lasers, 2020, 47(12): 1201004.

[71] GranierC, MegieG. Daytime lidar measurements of the mesospheric sodium layer[J]. Planetary and Space Science, 1982, 30(2): 169-177.

[72] KwonK, GardnerC, SenftD, et al. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois[J]. Journal of Geophysical Research, 1987, 92(A8): 8781-8786.

[73] FrankeS J, StollE, StatesR J, et al. Comparison of Na Doppler lidar and MF radar measurements of meridional winds in the mesosphere above Urbana, IL[J]. Journal of Atmospheric and Solar: Terrestrial Physics, 2001, 63: 1789-1796.

[74] SheC Y, ShermanJ, YuanT, et al. The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind[J]. Geophysical Research Letters, 2003, 30(6): 2002GL016412.

[75] DiettrichJ C, NottG J, ChuX Z, et al. Statistics of sporadic iron layers and relation to atmospheric dynamics[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(1): 102-113.

[76] ChuX Z, NishimuraY, XuZ H, et al. First simultaneous lidar observations of thermosphere-ionosphere Fe and Na (TIFe and TINa) layers at McMurdo (77.84°S, 166.67°E), Antarctica with concurrent measurements of aurora activity, enhanced ionization layers, and converging electric field[J]. Geophysical Research Letters, 2020, 47(20): e2020GL090181.

[77] ChuX Z, HuangW T, FongW C, et al. First lidar observations of polar mesospheric clouds and Fe temperatures at McMurdo (77.8°S, 166.7°E), Antarctica[J]. Geophysical Research Letters, 2011, 38(16): L16810.

[78] 程学武, 龚顺生, 李发泉, 等. 采用原子滤光的激光雷达白天探测技术[J]. 中国激光, 2007, 34(3): 406-410.

    Cheng X W, Gong S S, Li F Q, et al. Daytime observation technology of lidar by using atomic optical filter[J]. Chinese Journal of Lasers, 2007, 34(3): 406-410.

[79] XiaY A, JiaoJ, NozawaS, et al. Significant enhancements of the mesospheric Na layer bottom below 75 km observed by a full-diurnal-cycle lidar at Beijing (40.41°N, 116.01°E), China[J]. Atmospheric Chemistry and Physics, 2022, 22(20): 13817-13831.

[80] von ZahnU, H?ffnerJ. Mesopause temperature profiling by potassium lidar[J]. Geophysical Research Letters, 1996, 23(2): 141-144.

[81] EskaV, H?ffnerJ, von ZahnU. Upper atmosphere potassium layer and its seasonal variations at 54°N[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A12): 29207-29214.

[82] EskaV, von ZahnU, PlaneJ M C. The terrestrial potassium layer (75-110 km) between 71°S and 54°N: observations and modeling[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A8): 17173-17186.

[83] Fricke-BegemannC, H?ffnerJ. Temperature tides and waves near the mesopause from lidar observations at two latitudes[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D19): D19103.

[84] FriedmanJ S, CollinsS C, DelgadoR, et al. Mesospheric potassium layer over the Arecibo Observatory, 18.3°N 66.75°W[J]. Geophysical Research Letters, 2002, 29(5): 15-4.

[85] WangZ L, YangG T, WangJ H, et al. Seasonal variations of meteoric potassium layer over Beijing (40.41°N, 116.01°E)[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 2106-2118.

[86] AndrioliV F, XuJ, BatistaP P, et al. Simultaneous observation of sporadic potassium and sodium layers over São José dos Campos, Brazil (23.1°S, 45.9°W)[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): JA028890.

[87] JiaoJ, YangG T, WangJ H, et al. Initial multi-parameter detection of atmospheric metal layers by Beijing Na-K lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 46-51.

[88] KaiflerB, BüdenbenderC, MahnkeP, et al. Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd∶YAG laser[J]. Optics Letters, 2017, 42(15): 2858-2861.

[89] LiC, WuD C, DengQ A, et al. Simulation and optimization of Fe resonance fluorescence lidar performance for temperature-wind measurement[J]. Optics Express, 2022, 30(8): 13278-13293.

[90] YangG T, ClemeshaB, BatistaP, et al. Seasonal variations of gravity wave activity and spectra derived from sodium temperature lidar[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D18): D18104.

[91] ClemeshaB, SimonichD, BatistaP. Sodium lidar measurements of mesopause region temperatures at 23°S[J]. Advances in Space Research, 2011, 47(7): 1165-1171.

[92] EjiriM K, NakamuraT, KawaharaT D. Seasonal variation of nocturnal temperature and sodium density in the mesopause region observed by a resonance scatter lidar over Uji, Japan[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D18): D18126.

[93] KawaharaT D, NozawaS, SaitoN, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd∶YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E)[J]. Optics Express, 2017, 25(12): A491-A501.

[94] LiF Q, YangY, ChengX W, et al. The techniques and progress of wind and temperature lidar in WIPM[J]. EPJ Web of Conferences, 2016, 119: 12002.

[95] 夏媛. 全固态钠层风温探测激光雷达关键技术研究[D]. 武汉: 中国科学院武汉物理与数学研究所, 2017.

    XiaY. Research on key technologies of all-solid-state sodium layer wind temperature detection lidar[D]. Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 2017.

[96] 阎吉祥, 龚顺生, 刘智深. 环境监测激光雷达[M]. 北京: 科学出版社, 2001.

    YanJ X, GongS S, LiuZ S. Environmental monitoring lidar[M]. Beijing: Science Press, 2001.

[97] LiF, LiT, FangX, et al. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density[J]. Optics Express, 2021, 29(2): 1932-1944.

[98] RobleR G, DickinsonR E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?[J]. Geophysical Research Letters, 1989, 16(12): 1441-1444.

荀宇畅, 程学武, 杨国韬. 地基激光雷达对大气金属层的探测研究[J]. 光学学报, 2023, 43(18): 1899903. Yuchang Xun, Xuewu Cheng, Guotao Yang. Detection of Atmospheric Metal Layer by Ground-Based Lidar[J]. Acta Optica Sinica, 2023, 43(18): 1899903.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!