Skip to main content
Log in

Working memory contents enhance perception under stimulus-driven competition

  • Published:
Memory & Cognition Aims and scope Submit manuscript

Abstract

It is well known that attention is biased toward a stimulus matching working memory contents. However, it has been debated at which processing stage this memory-driven attentional bias takes place. While some studies show that memory-driven attention affects the early, perceptual stage of information processing, others argue that the finding showing such an effect is the result of working memory contents reducing uncertainty regarding the location of a target stimulus, without affecting the perception of the target. The present study tested whether a previous finding showing the perceptual effect of memory-driven attention is solely due to reduced target location uncertainty. We found that attentional bias by working memory contents affected the perception of a target stimulus, especially when multiple stimuli were present, competing against each other. This perceptual effect was not due to reduced target location uncertainty because the target location was always indicated by a response cue. Similar results were found regardless of whether working memory contents predicted the target location or not. These findings suggest that automatic, involuntary orienting of attention by working memory contents affects perception by resolving stimulus-driven competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Awh, E., Sgarlata, A. M., & Kliestik, J. (2005). Resolving visual interference during covert spatial orienting: Online attentional control through static records of prior visual experience. Journal of Experimental Psychology: General, 134(2), 192–206.

    Article  Google Scholar 

  • Beck, D. M., & Kastner, S. (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49, 1154–1165.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Carlisle, N. B., & Woodman, G. F. (2013). Reconciling conflicting electrophysiological findings on the guidance of attention by working memory. Attention, Perception, & Psychophysics, 75(7), 1330–1335.

    Article  Google Scholar 

  • Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2, 467–479.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral science (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

    Google Scholar 

  • Cosman, J. D., & Vecera, S. P. (2011). The contents of visual working memory reduce uncertainty during visual search. Attention, Perception, & Psychophysics, 73(4), 996–1002.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Dosher, B. A., & Lu, Z. L. (2000). Mechanisms of perceptual attention in precuing of location. Vision Research, 40, 1269–1292.

    Article  PubMed  Google Scholar 

  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11(6), 467–473.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1998). Converging levels of analysis in the cognitive neuroscience of visual attention. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1307–1317.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamker, F. H. (2004). A dynamic model of how feature cues guide spatial attention. Vision Research, 44(5), 501–521.

    Article  PubMed  Google Scholar 

  • Hamker, F. H. (2005). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex, 15(4), 431–447.

    Article  PubMed  Google Scholar 

  • Han, S. W., & Kim, M. S. (2008). Spatial working memory load impairs signal enhancement, but not attentional orienting. Perception & Psychophysics, 70, 916–923.

    Article  Google Scholar 

  • Han, S. W., & Kim, M. S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1292–1302.

    PubMed  Google Scholar 

  • Han, S. W., & Marois, R. (2014). The effects of stimulus-driven competition and task set on involuntary attention. Journal of Vision, 14(4):14, 1–24.

  • Herrmann, K., Montaser-Kouhsari, L., Carrasco, M., & Heeger, D. J. (2010). When size matters: Attention affects performance by contrast or response gain. Nature Neuroscience, 13, 1554–1559.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hollingworth, A., Matsukura, M., & Luck, S. J. (2013). Visual working memory modulates rapid eye movements to simple onset targets. Psychological Science, 24(5), 790–796.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang, M. S., Hong, S. W., Blake, R., & Woodman, G. F. (2011). Visual working memory contaminates perception. Psychonomic Bulletin and Review, 18(5), 860–869.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling, S., & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46, 1210–1220.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47(1), 108–113.

    Article  PubMed  Google Scholar 

  • Lu, Z.-L., & Dosher, B. (1998). External noise distinguishes attention mechanisms. Vision Research, 38, 1183–1198.

    Article  PubMed  Google Scholar 

  • Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of visual-spatial attention: Resource allocation or uncertainty reduction? Journal of Experimental Psychology: Human Perception and Performance, 22, 725–737.

    PubMed  Google Scholar 

  • Luck, S. J., & Thomas, S. J. (1999). What variety of attention is automatically captured by peripheral cues? Perception & Psychophysics, 61, 1424–1435.

    Article  Google Scholar 

  • Mendoza, D., Schneiderman, M., Kaul, C., & Martinez-Trujillo, J. (2011). Combined effects of feature-based working memory and feature-based attention on the perception of visual motion direction. Journal of Vision, 11(1), 11.

    Article  PubMed  Google Scholar 

  • Moore, C. M., & Egeth, H. (1998). How does feature-based attention affect visual processing? Journal of Experimental Psychology: Human Perception and Performance, 24, 1296–1310.

    PubMed  Google Scholar 

  • Mordkoff, J. T., & Egeth, H. E. (1993). Response time and accuracy revisited: Converging support for the interactive race model. Journal of Experimental Psychology: Human Perception and Performance, 19, 981–991.

    PubMed  Google Scholar 

  • Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265.

    PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psycho-physics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Peters, J. C., Roelfsema, P. R., & Goebel, R. (2012). Task-relevant and accessory items in working memory have opposite effects on activity in extrastriate cortex. Journal of Neuroscience, 32(47), 17003–17011.

    Article  PubMed  Google Scholar 

  • Prinzmetal, W., Ha, R., & Khani, A. (2010). The mechanisms of involuntary attention. Journal of Experimental Psychology: Human Perception and Performance, 36, 255–267.

    PubMed  Google Scholar 

  • Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: Reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134, 73–92.

    Article  Google Scholar 

  • Santee, J. L., & Egeth, H. E. (1982). Do reaction time and accuracy measure the same aspect of letter recognition? Journal of Experimental Psychology: Human Perception and Performance, 8, 489–501.

    PubMed  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956–972.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin and Review, 20(2), 296–301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Scocchia, L., Valsecchi, M., Gegenfurtner, K. R., & Triesch, J. (2013). Visual working memory contents bias ambiguous structure from motion perception. PLoS ONE, 8(3), e59217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shiu, L.-P., & Pashler, H. (1994). Negligible effect of spatial precuing in identification of single digits. Journal of Experimental Psychology: Human Perception and Performance, 20, 1037–1054.

    Google Scholar 

  • Soto, D., Greene, C. M., Chaudhary, A., & Rotshtein, P. (2012a). Competition in working memory reduces frontal guidance of visual selection. Cerebral Cortex, 22(5), 1159–1169.

    Article  PubMed  Google Scholar 

  • Soto, D., Greene, C. M., Kiyonaga, A., Rosenthal, C. R., & Egner, T. (2012b). A parieto-medial temporal pathway for the strategic control over working memory biases in human visual attention. Journal of Neuroscience, 32(49), 17563–17571.

    Article  PubMed  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261.

    PubMed  Google Scholar 

  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Science, 12(9), 342–348.

    Article  Google Scholar 

  • Soto, D., Wriglesworth, A., Bahrami-Balani, A., & Humphreys, G. W. (2010). Working memory enhances visual perception: Evidence from signal detection analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 441–456.

    PubMed  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377.

    PubMed Central  PubMed  Google Scholar 

  • Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12, 24–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brain Korea 21 Plus Project in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Won Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.W. Working memory contents enhance perception under stimulus-driven competition. Mem Cogn 43, 432–440 (2015). https://doi.org/10.3758/s13421-014-0460-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13421-014-0460-8

Keywords

Navigation