Skip to main content
Log in

Improving visual short-term memory by sequencing the stimulus array

  • Brief Reports
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

When multiple objects are presented briefly and simultaneously in a visual array, visual short-term memory (VSTM) can maintain only a limited number of these items. The present research report reveals that splitting the to-be-remembered items into two sequential arrays significantly increases VSTM performance relative to the simultaneous presentation of the same items. A memory benefit also emerges when the full object array is flashed twice (repeated) rather than being presented continuously for the same duration. Moreover, the sequential and repetition benefits are specifically pronounced for individuals with low performance for simultaneously presented items. Our results suggest that the conventional, simultaneous presentation mode may underestimate VSTM performance due to attentional limitations and/or competition between stimulus representations. In contrast, temporal segregation of the stimulus input may help participants maximize their performance and utilize their full VSTM capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Broadbent, D. E., & Broadbent, M. H. P. (1981). Recency effects in visual memory. Quarterly Journal of Experimental Psychology, 33A, 1–15.

    Article  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–114; discussion, 114–185. doi:10.1017/S0140525X01003922

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205

    Article  PubMed  Google Scholar 

  • Fecteau, J., & Shapiro, K. (2008). Multiplying the capacity of visual working memory [Abstract]. Journal of Vision, 8(6), 1168a.

    Article  Google Scholar 

  • Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. Journal of Neuroscience, 29, 8726–8733. doi:10.1523/JNEUROSCI.2145-09.2009

    Article  PubMed  Google Scholar 

  • Johnson, J. S., Spencer, J. P., Luck, S. J., & Schöner, G. (2009). A dynamic neural field model of visual working memory and change detection. Psychological Science, 20, 568–577. doi:10.1111/j.1467-9280.2009.02329.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., & Jiang, Y. (2005). Visual short-term memory for sequential arrays. Memory & Cognition, 33, 488–498.

    Article  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846

    Article  PubMed  Google Scholar 

  • Mayer, J. S., Bittner, R. A., Nikolic, D., Bledowski, C., Goebel, R., & Linden, D. E. (2007). Common neural substrates for visual working memory and attention. NeuroImage, 36, 441–453. doi:10.1016/ j.neuroimage.2007.03.007

    Article  PubMed  Google Scholar 

  • Olson, I. R., & Jiang, Y. (2004). Visual short-term memory is not improved by training. Memory & Cognition, 32, 1326–1332.

    Article  Google Scholar 

  • Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception & Performance, 31, 889–900. doi:10.1037/0096-1523.31.5.889

    Google Scholar 

  • Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.

    Article  Google Scholar 

  • Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLoS ONE, 3, e1699. doi:10.1371/journal.pone.0001699

    Article  PubMed  PubMed Central  Google Scholar 

  • Strasburger, H., Harvey, L. O., Jr., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception & Psychophysics, 49, 495–508.

    Article  Google Scholar 

  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi:10.1038/nature02447

    Article  PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503. doi:10.1038/nature04171

    Article  PubMed  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451. doi:10.1037/0096-1523.32.6.1436

    Google Scholar 

  • Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. doi:10.1038/nature04262

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Ihssen.

Additional information

The present study was supported by grants to all the authors from the Wales Institute of Cognitive Neuroscience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihssen, N., Linden, D.E.J. & Shapiro, K.L. Improving visual short-term memory by sequencing the stimulus array. Psychonomic Bulletin & Review 17, 680–686 (2010). https://doi.org/10.3758/PBR.17.5.680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.17.5.680

Keywords

Navigation