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Abstract: In this paper, we investigate the use of the new iterative method, referred to as the NIM, for solving the
one species LotkaVolterra equation. This equation, which describes the dynamics of populations in ecological
systems, has been widely studied in the field of mathematical biology. However, finding an analytical solution
to this equation can be challenging. To overcome this, we propose using the NIM as an alternative method for
solving the equation. To demonstrate the effectiveness of the NIM, we conduct a comparative study between it and
other wellestablished techniques such as the differential transformation method (DTM), the variational iteration
method (VIM), and the Adomian decomposition method (ADM). Through numerical simulations, we show that
the NIM is able to accurately and efficiently solve the one species LotkaVolterra equation, making it a promising
tool for researchers in the field of mathematical biology.
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1 Introduction
Nonlinear phenomena play a crucial role in vari

ous areas of science and engineering. However, solv
ing reallife nonlinear models is often challenging,
both numerically and theoretically. To make these
models tractable, unnecessary assumptions are often
made, [1], [2], [3], [4].

The LotkaVolterra equations, first introduced in
the field of mathematical biology, provide a mathe
matical model for describing the time evolution of a
biological system as reported in [5]. These equations
have also been applied in various engineering fields,
such as in the simultaneous control of chemical
processes and nonlinear systems, [6]. In particular,
the onepredator oneprey LotkaVolterra equation
serves as a simple example of a nonlinear control
system.

The DTM was initially introduced by [7], and
further developed in [8], [9]. DTM is an iterative
technique that aims to obtain Taylor series solutions
of various types of differential equations, as explored
in [10], [11], [12]. One of the main benefits of DTM
is that it can be applied to a wide range of differ
ential equations, without the need for linearization,
discretization, or perturbation. This makes it an
accurate method with relatively low computational
requirements as reported in [13].

The Adomian decomposition method (ADM)
was developed by [14], as a method for solving

challenging nonlinear physical problems. Since
its introduction, it has been utilized to address a
wide variety of differential equations, as reported in
literature such as [15], [16], [17], [18].

The VIM was first introduced by [19], and further
expanded upon in subsequent publications such as
[20], [21], [22]. This method has been demonstrated
to be effective in solving a wide range of ordinary
and partial differential equations, as shown in various
studies including, [23], [24], [25], [26].

The NIM was first introduced by [27]. Since
its inception, this method has been shown to be
a powerful technique for solving a wide range of
nonlinear equations as reported in [28], [29], [30],
[31], [32], [33], [34]. Recently, NIM has been used
to develop a novel predictorcorrector method, [35].
Additionally, Noor et al. have used NIM to create
numerical methods for solving algebraic equations as
reported in [36].

In this article, we present an application of the
NIM to solve the one species LotkaVolterra equa
tion, which describes the dynamics of populations in
ecological systems. The LotkaVolterra equation is a
nonlinear differential equation that can be challeng
ing to solve analytically. To overcome this, we em
ploy the NIM as an alternative method for solving the
equation. In order to evaluate the effectiveness of the
NIM, we conduct a comparison of the results obtained
with the NIM with the exact solution, as well as other
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wellestablished techniques such as the DTM, VIM,
and the ADM. Through this comparison, we aim to
show the potential of the NIM as a powerful tool for
solving the one species LotkaVolterra equation and
similar nonlinear differential equations.

2 The new iterative method (NIM)
In this section, the NIM numerical method will be

outlined as follows, [29], [30], [31], [32]:

u = f + L(u) +N(u), (1)

In the equation above, f is a known function, and
L and N are linear and nonlinear operators, respec
tively.
The NIM solution for Eq. (1) has the form

u =

∞∑
i=0

ui. (2)

Since L is linear then

L

( ∞∑
i=0

ui

)
=

∞∑
i=0

L(ui). (3)

The nonlinear operator N in Eq. (1) is decomposed
as below

N

( ∞∑
i=0

ui

)
= N(u0)

+

∞∑
i=1

N

 i∑
j=0

uj

−N

 i−1∑
j=0

uj


=

∞∑
i=0

Ai,

where

A0 = N(u0)

A1 = N(u0 + u1)−N(u0)

A2 = N(u0 + u1 + u2)−N(u0 + u1)

...

Ai =

N

 i∑
j=0

uj

−N

 i−1∑
j=0

uj

 , i ≥ 1.

Using Eqs.(2), (3) and (4) in Eq. (1), we get

∞∑
i=0

ui = f +

∞∑
i=0

L(ui) +

∞∑
i=0

Ai. (4)

The solution of Eq. (1) can be expressed as

u =

∞∑
i=0

ui = u0 + u1 + u2 + . . .+ un + . . . , (5)

where

u0 = f

u1 = L(u0) +A0

u2 = L(u1) +A1

...
un = L(un−1) +An−1

... (6)

Algorithm

INPUT : Read M(Number of iterations);

Read L(u); N(u); f

Step− 1 : u−1 = 0, u0 = f

Step− 2 : For(n = 0, n ≤ M,n++)

{
Step− 3 : An = f(un)− f(un−1);

Step− 4 : un+1 = f + L(un) +An;

Step− 5 : u = un+1

} end

OUTPUT : u

3 The convergence of the NIM
Theorem 1: For any n and for some real L > 0

and ||ui|| ≤ M < 1
e , i = 1, 2, ..., if N is C(∞)

in the neighborhood of u0 and ||N (n)(u0)|| ≤ L,
then

∑∞
n=0Hn is convergent absolutely and ||Hn|| ≤

LMnen−1(e− 1), n = 1, 2, ....
Proof:

||Hn|| ≤ LMn
∞∑

in=1

∞∑
in−1=0

· · ·
∞∑

i1=0

 n∏
j=1

1

ij !


= LMnen−1(e− 1). (7)

Thus the series
∑∞

n=1 ||Hn|| is dominated by the
convergent series LM(e− 1)

∑∞
n=1(Me)n−1, where

M < 1/e. Hence,
∑∞

n=0Hn is absolutely conver
gent, due to the comparison test.

As it is difficult to show boundedness of ui, for
all i, a more useful result is provedin the following
theorem, where conditions on N (k)(u0) are given
which are sufficient to guarantee convergence of the
series.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.38 Belal Batiha

E-ISSN: 2224-2880 325 Volume 22, 2023



Theorem 2: The series
∑∞

n=0Hn is convergent
absolutely if N is C(∞) and ||N (n)(u0)|| ≤ M ≤
e−1, ∀n.

Proof: Consider the recurrence relation

εn = ε0exp(εn−1), n = 1, 2, 3, ..., (8)
where ε0 = M . Define ηn = εn−εn−1, n = 1, 2, 3, ··
·. We observe that

||Hn|| ≤ ηn, n = 1, 2, 3, · · ·. (9)
Let

σn =

n∑
i=1

ηi = εn − ε0. (10)

Not that ε0 = e−1 > 0, ε1 = ε0exp(ε0) > ε0 and
ε2 = ε0exp(ε1) > ε0exp(ε0) = ε1. In general, εn >
εn−1 > 0. Hence

∑
ηn is a series of positive real

numbers. Note that
0 < ε0 = M = e−1 < 1,

0 < ε1 = ε0exp(ε0) < ε0e
1 = e−1e1 = 1, (11)

0 < ε2 = ε0exp(ε1) < ε0e
1 = 1.

In general 0 < εn < 1. Hence, σ = εn − ε0 <
1. This implies that {σn}∞n=1 is bounded above by 1,
and hence convergent. Therefore,

∑
Hn is absolutely

convergent by comparison test.

4 Numerical results and discussion
Here, we will focus on the study of the one species

LotkaVolterra equation in the context of competition
for a finite source of food. The LotkaVolterra equa
tion is a mathematical model that describes the dy
namics of populations in ecological systems and it is
widely used to study the interactions between differ
ent species. In this particular scenario, we will inves
tigate the behavior of one species that is competing for
a limited food supply. The analysis will involve un
derstanding the rate of change of the population of the
species and how it is affected by the food availability
and the competition with other species. Through this
analysis, we aim to gain insights into the impact of
competition and resource availability on population
dynamics and the behavior of the species. The one
species LotkaVolterra equation in the form:
du

dt
= u(b+ au), b > 0, a < 0, u(0) > 0, (12)

where a and b are constants. With exact solution:

u(t) =
bebt

b+au(0)
u(0) − aebt

for b ̸= 0, (13)

u(t) =
u(0)

1− au(0)t
, for b = 0. (14)

To apply the NIM to solve equation (12) with the
initial condition of u(0) = 0.1, we integrate eq. (12)
and utilize the specified initial condition to obtain:

u(t) = 0.1 +

∫ t

0
u(b+ au)dt (15)

By applying NIM we get:

u0 = 0.1,

u1 = 0.07t

u2 = −0.0049 t2 (t− 2.857143)

... (16)

The fourterm solution is:

u(t) = 0.1 + 0.07 t− 0.0049 t2(t− 2.857143)

−0.00001029 (t+ 5.587558)t3(t− 1.234763)

(t− 3.493845)(t− 7.525617)

−2.117682× 10−11 (t+ 5.877433)

(t+ 5.005629)t4(t− 4.090877)

(t− 6.871677)(t− 7.828486)

(t2 + 6.991252 t+ 21.95022)

(t2 − 2.520506 t+ 1.605527)

(t2 − 10.84848 t+ 38.63197) (17)

4.1 Discussion
The solutions calculated using the NIM are eval

uated against the accurate solution and solutions ob
tained through other techniques like the ADM, [25],
DTM, [12], and VIM ,[26]. Table 1 presents a com
parison between the exact solution and the numerical
solutions obtained using the NIM, ADM, DTM, and
VIM for b = 1, a = −3, u(0) = 0.1 and t ∈ [0, 1].
Similarly, Table 2 compares the numerical solutions
obtained by the NIM, ADM, DTM, VIM, and the ex
act solution for b = 1, a = −3, u(0) = 0.1 and
t ∈ [0, 3].

5 Conclusions
In this article, we employ the new iterative method

(NIM) developed by DaftardarGejji and Jafari to
solve the one species LotkaVolterra equation. This
method was implemented in a direct manner, with
out the need for linearization, perturbation, or any re
strictive assumptions. The results obtained using the
NIM were compared to those obtained using other
wellestablished methods such as the variational it
eration method (VIM), the differential transforma
tion method (DTM), and the Adomian decomposition
method (ADM), and it was found that the NIM is a
more effective method for solving nonlinear equa
tions. Through our analysis, we have demonstrated
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that the NIM is a highly efficient, accurate, and cost
effective method for solving the one species Lotka
Volterra equation.
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Table 1: Comparison study under the conditions b =
1, a = −3, and an initial value of u(0) = 0.1

t Exact solution NIM4 ADM, ϕ3 [25] V IM2 [25] DTM6 [12]
0.0 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000
0.2 0.1145329 0.1145329 0.1145600 0.1145545 0.1145329
0.4 0.1300011 0.1300011 0.1302400 0.1302590 0.1300004
0.6 0.1461629 0.1461627 0.1470400 0.1474445 0.1461546
0.8 0.1627259 0.1627256 0.1649600 0.1671263 0.1626790
1.0 0.1793672 0.1793669 0.1840000 0.1915249 0.1791887

Table 2: Comparison study under the conditions b =
1, a = −3, and an initial value of u(0) = 0.1

t Exact solution NIM4 V IM2 [26] ADM, ϕ3 [25] DTM9 [12]
0.0 0.10000 0.10000 0.10000 0.10000 0.10000
0.5 0.13801 0.13801 0.13862 0.13850 0.13801
1.0 0.17936 0.17937 0.19152 0.18400 0.17937
1.5 0.21921 0.21921 0.29877 0.23650 0.21932
2.0 0.25333 0.25333 0.30286 0.29600 0.25442
2.5 0.27975 0.27969 −4.4899 0.36250 0.28519
3.0 0.29864 0.29824 −69.317 0.43600 0.31533
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