
Let m ∈ N. For parameters a, b ∈ R and λ, α ∈ C,
Ramírez et al. in [4] introduces three new classes of
the Apostol-Bernoulli polynomials B

[m−1,α]
n (x; a, b;λ),

the degenerated generalized Apostol-Euler polynomi-
als E

[m−1,α]
n (x; a, b;λ) and the degenerated general-

ized Apostol-Genocchi polynomials G[m−1,α]
n (x; a, b;λ) of

level m by means of the following generating functions,
defined in a suitable neighborhood of t = 0:

tmα[σ(λ; a, b; t)]α(1 + at)
x
a =

∞∑
n=0

B[m−1,α]
n (x; a, b;λ)

tn

n!
,

2mα[ψ(λ; a, b; t)]α(1 + at)
x
a =

∞∑
n=0

E[m−1,α]
n (x; a, b;λ)

tn

n!
,

(2t)mα[ψ(λ; a, b; t)]α(1+at)
x
a =

∞∑
n=0

G[m−1,α]
n (x; a, b;λ)

tn

n!
,

where

σ(λ; a, b; t) =

(
λ(1 + at)

1
a −

m−1∑
l=0

(t log b)l

l!

)−1
and,

ψ(λ; a, b; t) =

(
λ(1 + at)

1
a +

m−1∑
l=0

(t log b)l

l!

)−1
.

The following proposition summarizes some ele-
mentary properties of the degenerated generalized the
Apostol-Bernoulli polynomials, the degenerated gener-
alized Apostol-Euler polynomials and the degenerated
generalized Apostol-Genocchi polynomials, in the vari-
able x, (cf. [4]).

Proposition I..1 For a m ∈ N fixed, let
{B[m−1,α]

n (x; a, b;λ)}n≥0, {E[m−1,α]
n (x; a, b;λ)}n≥0

and {G[m−1,α]
n (x; a, b;λ)}n≥0 be the sequence of degener-

ated generalized Apostol-type polynomials in the variable
x, a, b ∈ R+, order α ∈ C and level m. Then the
followings identities (Addition theorem of the argument)
hold.

B[m−1,α+β]
n (x+ y; a, b;λ) =
n∑
k=0

(
n

k

)
B

[m−1,α]
k (x; a, b;λ)B

[m−1,β]
n−k (y; a, b;λ),

B[m−1,α]
n (x+ y; a, b;λ) =

n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)(x|a)n−k, (1)

E[m−1,α+β]
n (x+ y; a, b;λ) =
n∑
k=0

(
n

k

)
E
[m−1,α]
k (x; a, b;λ)E

[m−1,β]
n−k (y; a, b;λ),

E[m−1,α]
n (x+ y; a, b;λ) =

n∑
k=0

(
n

k

)
E
[m−1,α]
k (y; a, b;λ)(x|a)n−k,

G[m−1,α+β]
n (x+ y; a, b;λ) =
n∑
k=0

(
n

k

)
G

[m−1,α]
k (x; a, b;λ)G

[m−1,β]
n−k (y; a, b;λ),

G[m−1,α]
n (x+ y; a, b;λ) =

n∑
k=0

(
n

k

)
G

[m−1,α]
k (y; a, b;λ)(x|a)n−k.
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On the subject of the Appell–type polynomials and
their various extensions, a remarkably large number of
investigations have appeared in the literature, see for
example (see, [1, 3, 7, 10]).

On the other hand, the first–kind Stirling number
s(n, k) is the number of ways in which n objects can
be divided among k non–empty cycles and the second-
kind Stirling numbers S(n, k) count the number of ways
to partition a set of n elements into exactly k nonempty
subsets. The generating functions are given, respectively,
by (see [8]):

1

k!
[ln(1 + t)]

k
=
∞∑
n=k

s(n, k)
tn

n!

and,
1

k!
(et − 1)k =

∞∑
n=k

S(n, k)
tn

n!
.

The generalized falling factorial (x|a)n with increment a
is defined by (see [9, Definition 2.3]):

(x|a)n =
n−1∏
k=0

(x− ak),

for positive integer n, with the convention (x|a)0 = 1, it
follows that

(x|a)n =
n∑
k=0

s(n, k)an−kxk. (2)

Proposition I..2 For m ∈ N. Let {B[m−1]
n (x)}n≥0 and

{Gn(x)}n≥0 be the sequences of generalized Bernoulli
polynomials of level m and Genocchi polynomials, respec-
tively. Then, the following identities are satisfied.

1) [6, Equation (2.6)].

xn =
n∑
k=0

(
n

k

)
k!

(k +m)!
B

[m−1]
n−k (x), (3)

2) [5, Remark 7].

xn =
1

2(n+ 1)

[
n+1∑
k=0

(
n+ 1

k

)
Gk(x) +Gn+1(x)

]
.

(4)

From the Proposition I..2 it is possible to deduce
some interesting algebraic relations connecting the de-
generated generalized Apostol–Bernoulli, Apostol–Euler
and Apostol–Genocchi polynomials and other families of
polynomials such as generalized Bernoulli polynomials of
level m, Genocchi polynomials and Apostol-Euler poly-
nomials.

Theorem II..1 For m ∈ N, degenerated general-
ized Apostol–Bernoulli polynomials B

[m−1,α]
n (x; a, b;λ),

are related with the generalized Bernoulli polynomials
B

[m−1]
n (x) of level m, by means of the following identity.

B[m−1,α]
n (x+ y; a, b;λ) =

n∑
k=0

n−k∑
j=0

ν∑
r=0

(
n

k

)(
ν

r

)
r!an−k−j

(r +m)!

×B
[m−1,α]
k (y; a, b;λ)s(n− k, j)B[m−1]

ν−r (x).

Proof 1 By substituting (3) and (2) into the right-hand
side of (1), we have

B[m−1,α]
n (x+ y; a, b;λ)

=
n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)(x|a)n−k

=
n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)

n−k∑
j=0

s(n− k, j)an−k−jxj .

=
n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)

n−k∑
j=0

s(n− k, j)an−k−j

×
ν∑
r=0

(
ν

r

)
r!

(r +m)!
B

[m−1]
ν−r (x)

=
n∑
k=0

n−k∑
j=0

ν∑
r=0

(
n

k

)(
ν

r

)
r!an−k−j

(r +m)!

×B
[m−1,α]
k (y; a, b;λ)s(n− k, j)B[m−1]

ν−r (x).

Therefore, Theorem II..1 holds.

The proofs of Theorem II..2 and Theorem II..3, it is
analogously to Theorem II..1.

Theorem II..2 For m ∈ N, degenerated general-
ized Apostol–Euler polynomials E

[m−1,α]
n (x; a, b;λ), are

related with the generalized Bernoulli polynomials
B

[m−1]
n (x) of level m, by means of the following identity.

E[m−1,α]
n (x+ y; a, b;λ)

=
n∑
k=0

n−k∑
j=0

ν∑
r=0

(
n

k

)(
ν

r

)
r!an−k−j

(r +m)!

× E
[m−1,α]
k (y; a, b;λ)s(n− k, j)B[m−1]

ν−r (x).

Theorem II..3 For m ∈ N, degenerated general-
ized Apostol–Genocchi polynomials G

[m−1,α]
n (x; a, b;λ),

are related with the generalized Bernoulli polynomials
B

[m−1]
n (x) of level m , by means of the following identity.

G[m−1,α]
n (x+ y; a, b;λ)

=

n∑
k=0

n−k∑
j=0

ν∑
r=0

(
n

k

)(
ν

r

)
r!an−k−j

(r +m)!

×G
[m−1,α]
k (y; a, b;λ)s(n− k, j)B[m−1]

ν−r (x).

Theorem II..4 For m ∈ N, degenerated generalized
Apostol–Bernoulli polynomials B

[m−1,α]
n (x; a, b;λ), are

2. Some connection formulas for  
degenerated generalized 
Apostol–Bernoulli, ApostolïEuler 
and ApostolïGenocchi polynomials    
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related with the Genocchi polynomials Gn(x), by means
of the following identity.

B[m−1,α]
n (x+ y; a, b;λ)

=
n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)

ν+1∑
r=0

Gr(x)

×B
[m−1,α]
k (y; a, b;λ)s(n− k, j)

(
ν + 1

r

)
+

n∑
k=0

n−k∑
j=0

(
n

k

)
s(n− k, j)Gν+1(x).

Proof 2 By substituting (4) and (2) into the right-hand
side of (1), we obtain

B[m−1,α]
n (x+ y; a, b;λ)

=
n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)(x|a)n−k

=
n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)

n−k∑
j=0

s(n− k, j)an−k−jxj

=

n∑
k=0

(
n

k

)
B

[m−1,α]
k (y; a, b;λ)

n−k∑
j=0

s(n− k, j)an−k−j

×

[
1

2(ν + 1)

ν+1∑
r=0

(
ν + 1

k

)
Gr(x) +

1

2(ν + 1)
Gν+1(x)

]

=

n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)

ν+1∑
r=0

(
ν + 1

k

)
s(n− k, j)

×B
[m−1,α]
k (y; a, b;λ)Gr(x)

+
n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)
Gν+1(x)

×B
[m−1,α]
k (y; a, b;λ)s(n− k, j).

Therefore, Theorem II..4 holds.

The proofs of Theorem II..5 and Theorem II..6, it is
analogously to Theorem II..4.

Theorem II..5 For m ∈ N, degenerated generalized
Apostol–Euler polynomials E

[m−1,α]
n (x; a, b;λ), are re-

lated with the Genocchi polynomials Gn(x), by means of
the following identity.

E[m−1,α]
n (x+ y; a, b;λ) =

n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)

ν+1∑
r=0

Gr(x)× E
[m−1,α]
k (y; a, b;λ)s(n− k, j)

(
ν + 1

r

)

+
n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)
E
[m−1,α]
k (y; a, b;λ)

×s(n− k, j)Gν+1(x).

Theorem II..6 For m ∈ N, degenerated generalized
Apostol–Genocchi polynomials G

[m−1,α]
n (x; a, b;λ), are

related with the Genocchi polynomials Gn(x), by means
of the following identity.

G[m−1,α]
n (x+ y; a, b;λ)

=
n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)

ν+1∑
r=0

Gr(x)

×G
[m−1,α]
k (y; a, b;λ)s(n− k, j)

(
ν + 1

r

)
+

n∑
k=0

n−k∑
j=0

(
n

k

)
an−k−j

2(ν + 1)
G

[m−1,α]
k (y; a, b;λ)

× s(n− k, j)Gν+1(x).

Theorem II..7 For m ∈ N, degenerated generalized
Apostol–Bernoulli polynomials B

[m−1,α]
n (x; a, b;λ), they

satisfy the following relation.

B[m−1,α]
n (ax+ x; a, b;λ) =

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

×B
[m−1,α]
n−1−k (x; a, b;λ) +B[m−1,α]

n (x; a, b;λ).

Proof 3 By the generating function of degen-
erated generalized Apostol–Bernoulli polynomi-
als B

[m−1,α]
n (x; a, b;λ) and considering ϕn =

B
[m−1,α]
n (ax + x; a, b;λ) and ψn = B

[m−1,α]
n (x; a, b;λ),

we have

∞∑
n=0

[ϕn − ψn]
tn

n!
= tmα[σ(λ; a, b; t)]α(1 + at)

ax+x
a

− tmα[σ(λ; a, b; t)]α(1 + at)
x
a

=tmα[σ(λ; a, b; t)]α(1 + at)
x
a [(1 + at)x − 1]

=
∞∑
n=0

B[m−1,α]
n (x; a, b;λ)

tn

n!

∞∑
n=0

(
x

n+ 1

)
ak+1zn+1

=
∞∑
n=0

n∑
k=0

(
x

k + 1

)(
n

k

)
k!ak+1B[m−1,α]

n (x; a, b;λ)
tn+1

n!

=
∞∑
n=0

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
k!nak+1B[m−1,α]

n (x; a, b;λ)
tn

n!
.

Comparing the coefficients of
tn

n!
in both sides of the

equation, the result is

B[m−1,α]
n (ax+ x; a, b;λ) =

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

×B
[m−1,α]
n−1−k (x; a, b;λ) +B[m−1,α]

n (x; a, b;λ).

Theorem II..8 For m ∈ N, degenerated generalized
Apostol–Euler polynomials E

[m−1,α]
n (x; a, b;λ), they sat-
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isfy the following relation.

E[m−1,α]
n (ax+ x; a, b;λ)

=
n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

× E
[m−1,α]
n−1−k (x; a, b;λ) + E[m−1,α]

n (x; a, b;λ).

Proof 4 By the generating function of degenerated gen-
eralized Apostol–Euler polynomials E

[m−1,α]
n (x; a, b;λ)

and considering ϕn = E
[m−1,α]
n (ax+ x; a, b;λ) and ψn =

E
[m−1,α]
n (x; a, b;λ), we have

∞∑
n=0

[ϕn − ψn]
tn

n!
= 2mα[ψ(λ; a, b; t)]α(1 + at)

ax+x
a

− 2mα[ψ(λ; a, b; t)]α(1 + at)
x
a

= 2mα[ψ(λ; a, b; t)]α(1 + at)
x
a [(1 + at)x − 1]

=
∞∑
n=0

E[m−1,α]
n (x; a, b;λ)

tn

n!

∞∑
n=0

(
x

n+ 1

)
ak+1zn+1

=
∞∑
n=0

n∑
k=0

(
x

k + 1

)(
n

k

)
k!ak+1

× E[m−1,α]
n (x; a, b;λ)

tn+1

n!

=
∞∑
n=0

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
k!nak+1

× E[m−1,α]
n (x; a, b;λ)

tn

n!
.

Comparing the coefficients of
tn

n!
in both sides of the

equation, the result is

E[m−1,α]
n (ax+ x; a, b;λ) =

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

× E
[m−1,α]
n−1−k (x; a, b;λ) + E[m−1,α]

n (x; a, b;λ).

Theorem II..9 For m ∈ N, degenerated generalized
Apostol–Genocchi polynomials G

[m−1,α]
n (x; a, b;λ), they

satisfy the following relation.

G[m−1,α]
n (ax+ x; a, b;λ) =

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

×G
[m−1,α]
n−1−k (x; a, b;λ) +G[m−1,α]

n (x; a, b;λ).

Proof 5 By the generating function of degen-
erated generalized Apostol–Genocchi polynomi-
als G

[m−1,α]
n (x; a, b;λ) and considering ϕn =

G
[m−1,α]
n (ax + x; a, b;λ) and ψn = G

[m−1,α]
n (x; a, b;λ),

we have
∞∑
n=0

[ϕn − ψn]
tn

n!
= (2t)mα[σ(λ; a, b; t)]α(1 + at)

ax+x
a

− (2t)mα[ψ(λ; a, b; t)]α(1 + at)
x
a

= (2t)mα[ψ(λ; a, b; t)]α(1 + at)
x
a [(1 + at)x − 1]

=
∞∑
n=0

G[m−1,α]
n (x; a, b;λ)

tn

n!

∞∑
n=0

(
x

n+ 1

)
ak+1zn+1

=
∞∑
n=0

n∑
k=0

(
x

k + 1

)(
n

k

)
k!ak+1G[m−1,α]

n (x; a, b;λ)
tn+1

n!

=
∞∑
n=0

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
k!nak+1G[m−1,α]

n (x; a, b;λ)
tn

n!
.

Comparing the coefficients of
tn

n!
in both sides of the

equation, the result is

G[m−1,α]
n (ax+ x; a, b;λ) =

n−1∑
k=0

(
x

k + 1

)(
n− 1

k

)
ak+1nk!

×G
[m−1,α]
n−1−k (x; a, b;λ) +G[m−1,α]

n (x; a, b;λ).

In this work, new properties of the degenerated gen-
eralized Apostol–Bernoulli, Apostol–Euler and Apostol–
Genocchi polynomials are studied, using various generat-
ing function methods. The generalization of these results
can lead to other interesting results, which can be useful
for fractional calculus theory.
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