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Abstract: - The designs of two linear control systems approach to stabilize the balance of an unmanned bicycle 
system are presented. Both approaches are based on the use of a reaction wheel or flywheel to balance the 
bicycle. The two linear control approaches, based on the linearization of a nonlinear model obtained using 
Lagrange formalism, are the classic linear controllers, PID and State Feedback control. The performance of 
both controllers is verified by digital simulation and real-time experimental results. 
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1   Introduction 
In the last two decades, scientists have focused on 
achieving the goal of balancing a two-wheeled 
bicycle. The problem of unmanned balancing the 
bicycle when it is moving at a certain speed or zero 
speed is very attractive to systems control 
researchers, [1], [2], [3], because it presents three 
interesting problems for this community: the system 
is unstable, a zero at the origin, and the presence of 
disturbances. To solve this problem, authors usually 
use a robust control algorithm and mechanical 
devices, such as flywheels or gyroscopes, to add 
them to the bicycle to stabilize it at zero speed 
wheel, [4], [5], [6], [7], [8], [9], [10], [11], [12], 
[13], [14], [15], [16]. Although, in this paper, the 
flywheel could be assumed as a basic gyroscope 
working only on an axis of rotation, it may be a first 
step in the use of full gyroscopes, not only as rigid 
body position sensors but for the stabilization of 
mechanical vehicles. For instance, gyroscopes could 
be used as satellite position controllers. However, it 
requires first designing, controllers for the 
gyroscopes themselves. Unfortunately, this is not a 
simple task because gyroscopes are highly nonlinear 
multivariable systems, [17] and [18]. 

In this work, the prototype of an autonomous 
bicycle is stabilized at zero speed, that is, when the 
bicycle is not moving; so, the bicycle is treated as an 
inverted pendulum, neglecting the induced torques 
generated by maneuvering the bicycle handlebar. 
Nonetheless, these torques could be dumped into the 
bicycle perturbations. The prototype, the basis of 

this article, is one of three mechatronic systems that 
can be assembled using a kit called “Arduino 
Engineering Kit Rev2” [19], developed by 
Mathworks and Arduino. The two control strategies 
selected to stabilize the bicycle are PID and state 
feedback control. These controllers were chosen due 
to their easy implementation and because they are 
well suited for an engineering context. Additionally, 
the State Feedback controller is a natural option 
because the prototype allows access to all process 
states. In this context, the article is divided into the 
following sections: In Section 2, the dynamic model 
of the self-balancing bicycle based on the Lagrange 
formalism, which also includes the actuator electric 
DC motor, is presented. In Section 3 the design of 
the PID controller and the State Feedback controller 
are shown. In Section 4, the performance of the 
designed controllers is verified through simulations 
and the implementation of the controller. Finally, in 
Section 5, the conclusion of the research is 
presented. 

 
 

2 Mathematical Model of a Self-

balancing Bicycle 
In this section, the model of the unmanned bicycle 
system is presented. The development is based on 
the principle of the inertial wheel pendulum to 
obtain simplified Lagrange dynamic equations. 
Subsequently, the nonlinear differential equations 
are linearized at an equilibrium point. These linear 
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differential equations are the basis for carrying out 
the design of the two linear controller approaches. 
The Bicycle to be stabilized is shown in Figure 1. 

 

 
Fig. 1: Complete robotic bicycle 

 

 
Fig. 2: Front view of the robotic bicycle and 
reference coordinate system 

 
To obtain the equations describing the dynamics 

of the system, a behavior like an inverted pendulum 
with a flywheel is assumed. 

 The variables and coordinate system that were 
used are shown in Figure 2, from the front view of 
the robotic bicycle, where: 

θ: It is the angle of inclination of the robotic 
bicycle concerning the vertical axis. 

ω: It is the angular velocity of the flywheel or 
reaction wheel. 

A: It is the axis of rotation of the inverted 
pendulum, in this case, the robotic bicycle. 

B: It is the center of mass of the robotic bicycle. 

Table 1. Dynamic Parameters 

 
 
First, the model of the electric DC motor actuator 

is developed. Using the basic circuit that represents 
a DC motor in Figure 3, the equation below is 
obtained: 

𝑉 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝐸𝑎 (1) 

 
Fig. 3: Diagram of DC motor 
 

Where, 𝑉 is the motor supply voltage, 𝑅𝑎 and 𝐿𝑎 
are the armature coil resistance and inductance, 
respectively; 𝑖𝑎 is the armature current, and 𝐸𝑎 is 
the counter-electromotive force, given by the 
following equation: 

𝐸𝑎 = 𝐾𝑎𝜔   (2) 
 
Where  𝜔(𝑡) = 𝜃′(𝑡) is the rotor speed, and 

therefore, the flywheel angular velocity and,  𝐾𝑎 is 
the electromotive constant. In DC motors, it is 
generally assumed that the generated torque is 
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proportional to the current provided, this 
relationship is clarified in the following equation: 

𝜏𝑚 = 𝐾𝑚𝑖𝑎        (3) 
  
where 𝜏𝑚(𝑡) is the torque generated by the motor 
and 𝐾𝑚 is the torque constant of the motor, the 
following equation is obtained by substituting (1) 
into (3). 

𝜏𝑚 =
𝐾𝑚

𝑅𝑎
(𝑉 − 𝐿𝑎

𝑑𝑖𝑎

𝑑𝑡
− 𝐸𝑎) (4) 

 
It is considered that the term corresponding to 

the inductance 𝐿𝑎 can be neglected, since its value is 
much lower than that of the resistance 𝑅𝑎,  
considering this and substituting (2) into (4), the 
following equation is obtained: 

𝜏𝑚 =
𝐾𝑚

𝑅𝑎
(𝑉 − 𝐾𝑎𝜔) (5) 

 
By using the Lagrange formalism, the following 

equations that describe the mechanical dynamics of 
the system are given. 

The torque about a given axis of rotation is the 
sum of all the torques that act in the system on this 
axis, and is defined as: 

𝜏𝑁 = ∑𝜏𝑠𝑖 = 𝐼𝑠𝜃̈𝑠                                          (6) 
 
where,  

: It is the net torque applied to the axis of 
rotation. 

: These are the torques applied on the axis of 
rotation. 

: Moment of inertia of the system. 
: Angular acceleration of the system 
If no external torque acts on the robotic bicycle, 

other than that due to gravitational acceleration, we 
have two torques that act on the bicycle: 

: Torque due to gravitational acceleration. 

: Torque due to the flywheel. 
Therefore, the net torque on the bicycle with 

respect to the axis of rotation A, Figure 2, results in: 
      𝜏𝐵𝑛𝑒𝑡 = 𝐼𝐵𝜃̈ = 𝜏𝑔 − 𝜏𝑣𝑖                       (7) 

 
Where the bicycle’s moment of inertia is 𝐼𝑏. The 

torque  𝜏𝑣𝑖, provided by the flywheel which in turn 
is generated by the DC motor, must be of equal 
magnitude but in the opposite direction to the torque 
  𝜏𝑔, in such a way that the angular momentum of 
the robotic bicycle is conserved. Expanding the 
terms of equation (7) we obtain: 

 
𝐼𝐵𝜃̈ = 𝑚𝑏𝑔𝑙𝐴𝐵sen(θ) + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶sen(θ) − 𝐼𝑣𝑖

𝐶 𝜔̇      (8) 

The torque 𝜏𝑣𝑖 which is provided by the flywheel 
can be described by the following equation: 
𝜏𝑣𝑖 = 𝐼𝑣𝑖

𝐶 (𝜔̇ + 𝜃̈)    (9) 
 
Subsequently, adding equations (5) to (8) and (9), 

we obtain: 
 𝐼𝐵𝜃̈ = 𝑚𝑏𝑔𝑙𝐴𝐵sen(θ) + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶sen(θ) −

(
𝐾𝑚

𝑅𝑎𝐼𝑣𝑖
𝐶 (𝑉 − 𝐾𝑎𝜔) − 𝐼𝑣𝑖

𝐶 𝜃̈)                 (10) 
 
𝜏𝑣𝑖 = 0.5𝑚𝑣𝑖𝑅

2(𝜔̇ + 𝜃̈) = 𝜏𝑚 =
𝐾𝑚

𝑅𝑎
(𝑉 − 𝐾𝑎𝜔)       (11) 

 
Defining states 𝑥1 = θ, 𝑥2 = θ´, 𝑥3 = ω, the non-

linear state space representation is given by: 

[

𝑥̇1

𝑥̇2

𝑥̇3

]

=

[
 
 
 
 
 

𝑥2

𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶

𝐼𝐵 − 𝐼𝑣𝑖
𝐶 𝑠𝑒𝑛(𝑥1) +

𝐾𝑚𝐾𝑎

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

𝑥2 −
𝐾𝑚

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

𝑢

−
𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶

𝐼𝐵 − 𝐼𝑣𝑖
𝐶 𝑠𝑒𝑛(𝑥1) −

𝐾𝑚𝐾𝑎𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )
𝑥3 +

𝐾𝑚𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )
𝑢
]
 
 
 
 
 

= [

𝑓1

𝑓2

𝑓3

] 

𝑦 = 𝑥1 = ℎ(𝑥) = [1 0 0] [

𝑥1

𝑥2

𝑥3

]                             (12) 

 
Linearizing the nonlinear equations (12), [20], at 

the equilibrium point  𝑥0 = [𝑥1(0) 𝑥2(0) 𝑥3(0)] =
[0 0 0];     𝑢0 = 𝑢(0) = 0, the state space 
representation, where:

                   (13) 
 
with  is given by: 

[

𝑥̇1

𝑥̇2

𝑥̇3

] =

[
 
 
 
 
 

0 1 0
𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶

𝐼𝐵 − 𝐼𝑣𝑖
𝐶 0

𝐾𝑚𝐾𝑎

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

−
𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶

𝐼𝐵 − 𝐼𝑣𝑖
𝐶 0 −

𝐾𝑚𝐾𝑎𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )]
 
 
 
 
 

[

𝑥1

𝑥2

𝑥3

]

+

[
 
 
 
 
 

0

−
𝐾𝑚

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

𝐾𝑚𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )]
 
 
 
 
 

𝑉 

𝑦 = [1 0 0] [

𝑥1

𝑥2

𝑥3

]                                    (14) 

N

si

sI

s

g

vi

 
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0
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Substituting the values of the parameters 
provided by the prototype maker, Table 1, we obtain 
the linear state space model: 

[

𝑥̇1

𝑥̇2

𝑥̇3

] = [
0 1 0

96.5795 0 0.0195
−96.5795 0 −0.6608

] [

𝑥1

𝑥2

𝑥3

] + [
0

−1.0241
34.7768

]𝑉        

𝑦 = [1 0 0] [

𝑥1

𝑥2

𝑥3

]                                    (15) 

 
 
3    Control Design 
In this section, the design of two linear controllers is 
presented. The PID and state feedback controllers 
were chosen. Both controllers were chosen mainly 
because of their well-proven effectiveness, for the 
PID controller, and because there is complete access 
to the state vector, in the case of State Feedback. 
Also, both controllers are easy to implement and are 
well suited for engineering contexts.  
 
3.1  PID Control Design  
The Transfer Function associated with the linear 
state space model of equation (15) is as follows: 

  (16) 

 
Rewriting the above equation:

            (17)  

 
The system is unstable, with a pole at 9.818, two 

stable poles {-9.838, -0.6412}, and a zero at the 
origin. The root locus of 𝐺(𝑠)is presented in Figure 
4. 

 
Fig. 4: Root locus of G(s) 

 
One of the closed-loop poles lies on the right half 

of the S plane, making the system unstable. In 
addition, there is zero at the origin, which becomes 
an uncomfortable issue because it represents a 
derivative behavior in the system and can lead to 

stabilizing the system using a PID controller. 
From the observations made on the graph of the 

root locus of the system, the following transfer 
function was designed for the bicycle's PID 
controller: 

𝐶(𝑠) =
𝑠2+10𝑠+30

𝑠
    (18) 

 
The pole at the origin in C(s) has the purpose of 

removing the origin zero in G(s), while the complex 
conjugate zeros must be responsible for determining 
the trajectory of the root locus so that, with an 
appropriate gain, all the poles will lie on the left-
hand plane. The transfer function of the open loop 
system is given by: 
𝐺𝐿𝐴(𝑠) = 𝐶(𝑠)𝐺(𝑠) =

−1.024𝑠3−10.24𝑠2−30.72𝑠

𝑠4+0.661𝑠3−96.58𝑠2−61.94𝑠
           (19) 

 
The roots of the closed-loop system can be 

analyzed by using the root locus. 
 

 
Fig. 5: Root locus of 𝐺𝐿𝐴(𝑠)  

 
As seen in the graph in Figure 5, when adding the 

controller, the roots locus changes according to 
plan, with a gain greater than 11.7, the closed-loop 
poles will lie in the left half-plane, so the system 
becomes closed-loop stable. However, the stable 
closed-loop pole close to the origin, which becomes 
the dominant pole, may affect the performance of 
the control system due to its very large steady-state 
time. Therefore, redesigning the controller to reduce 
the steady-state time of the dominant poles results 
in: 
𝐶(𝑠) =

𝑠2+20𝑠+104

0.001𝑠2+𝑠
                (20) 

 
With this new controller design, the root locus is 

shown in the following Figure 6. 

 
1 1.024( ) 3 2( 0.6608 96.5795 61.9366)

s
G s C sI A B

s s s

 
  

  

   

1.024
( )

9.818 9.838 0.6412

s
G s

s s s



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Fig. 6: Root locus with the new controller 

 
In this graph, it is observed that the pole 

introduced by the controller at -1000 causes one of 
the poles closest to the origin to move away from 
the origin and, finally, around -500 together with the 
high-frequency pole, both poles separate from the 
real axis symmetrically, resulting in a pair of non-
dominant complex poles. 

 
Figure 7 shows a close-up of the trajectories of 

the dominant poles that are close to the origin. 
 

 
Fig. 7: Root locus close-up with new controller 

 
Finally, a gain of 28 has been chosen so that the 

poles lie on the left half-plane, thereby ensuring the 
closed-loop stability of the system. 

 The Nyquist plot and Bode diagrams of 
𝐶(𝑠)𝐺(𝑠), shown in Figure 8 and Figure 9, show 
that robustness is also guaranteed as the stability 
margins result in 𝑀𝑔 = ∞𝑑𝐵𝑠 and 𝑀𝑝 = −57 

 

 
Fig. 8: Bode Diagrams of 𝐶(𝑠)𝐺(𝑠) 

 

 
Fig. 9: Nyquist plot of   

 
To assess the performance of the control system 

based on the controller of equation (20), the result of 
a digital simulation based on the nonlinear model of 
equations (10) and (11), assuming an obvious 
reference signal of 0° and constant disturbances of 
±6° with a frequency of 0.5 𝑟𝑎𝑑/𝑠𝑒𝑐 is presented in 
Figure 10. This figure shows that controller (20) 
stabilizes the system with excellent disturbance 
rejection, achieving the objective. 

 

 
Fig. 10: Output signal corresponding to the 
inclination angle  𝜃. 

( ) ( )C s G s
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Unfortunately, it was not possible to carry out a 
real-time implementation using the controller of 
equation (20) as the control system became 
unstable. This is due to the required pole/zero 
cancellation at the origin, a cancellation that cannot 
be guaranteed in practice. Furthermore, as shown in 
Figure 4, if the controller does not cancel zero at the 
origin using an integrator or a pole at the origin, an 
unstable controller would be necessary to break the 
direct path between the unstable pole at 9.818 and 
zero at the origin. A possible alternative to an 
unstable controller is to combine a State Feedback 
controller with a PI controller, as depicted in Figure 
11. The State Feedback controller will stabilize the 
system, while the PI controller will ensure 
performance. 

 
Fig. 11: PI and State Feedback Control System 
 
3.2 Pole Placement State Feedback Control 

Design  
It is well-known that the stability and control 
performance of a closed-loop system depends on its 
pole locations. In this section, the pole placement 
method will be used to place the poles of the closed-
loop system in the desired positions by state 
feedback. To achieve this, the sufficient and 
necessary condition for the existence of the state 
feedback controller is that the system must be 
controllable. 
   To know if this system, represented by the state 
equations (14), is controllable, it is necessary to 
check that the controllability matrix 𝐶𝑀 is full range. 
For this system, the matrix 𝐶𝑀 is defined as: 
𝐶𝑀 = [𝐵 𝐴𝐵 𝐴2𝐵]                         (21) 
    
The rank of the controllability matrix is equal to the 
number of linearly independent rows or columns, 
therefore, the 𝐶𝑀  matrix is full rank, if its 
determinant is different from zero. 
 
   The controllability matrix of this system 
𝐶𝑀 = [𝐵 𝐴𝐵 𝐴2𝐵]=                (22)
  

[
 
 
 
 
 
 
 0

𝐾𝑚𝐾𝑎

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

𝐾𝑚
2 𝐾𝑎𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎

2(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )2

−
𝐾𝑚

𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )

𝐾𝑚
2 𝐾𝑎𝐼𝐵

𝐼𝑣𝑖
𝐶 𝑅𝑎

2(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 )2

−
(𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶)𝐾𝑚𝐼𝑣𝑖

𝐶 2
𝑅𝑎

2(𝐼𝐵 − 𝐼𝑣𝑖
𝐶 ) + 𝐾𝑚

3 𝐾𝑎
2𝐼𝐵

2

𝐼𝑣𝑖
𝐶 2

𝑅𝑎
3(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )3

𝐾𝑚𝐼𝐵
𝐼𝑣𝑖
𝐶 𝑅𝑎(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )
−

𝐾𝑚
2 𝐾𝑎𝐼𝐵

2

𝐼𝑣𝑖
𝐶 2

𝑅𝑎
2(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )2

(𝑚𝑏𝑔𝑙𝐴𝐵 + 𝑚𝑣𝑖𝑔𝑙𝐴𝐶)𝐾𝑚𝐼𝑣𝑖
𝐶 3

𝑅𝑎
2(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 ) + 𝐾𝑚
3 𝐾𝑎

2𝐼𝐵
3

𝐼𝑣𝑖
𝐶 3

𝑅𝑎
3(𝐼𝐵 − 𝐼𝑣𝑖

𝐶 )3 ]
 
 
 
 
 
 
 

 

 
The determinant is given by: 

|𝐶𝑀| =
(𝑚𝑏𝑔𝑙𝐴𝐵+𝑚𝑣𝑖𝑔𝑙𝐴𝐶)𝐾𝑚

3

𝑅𝑎
3𝐼𝑣𝑖

𝐶 (𝐼𝐵−𝐼𝑣𝑖
𝐶 )

3 = 143.5352 × 103         (23) 

 
Since the determinant of 𝐶𝑀 is not zero its rank is 

equal to 3, equal to the order of the system, so the 
system is controllable and, therefore, state feedback 
control exists. 

The system dynamics given by (15) are used for 
the design of the linear controllers as follows. 

 
Let the control given by: 
𝑢 = 𝑟 − 𝒌𝒙               (24) 
 
Where 𝑢 is the control signal, 𝑟 is the reference 

signal, and 𝒌 is the state feedback gain vector. 
 
The closed loop system is as follows: 

𝑥̇ = (𝑨 − 𝑩𝑘)𝑥 + 𝑩𝑟;  𝑦 = 𝑪𝑥              (25) 
 
Rewriting 
𝑥̇ = 𝑨𝐿𝐶𝑥 + 𝑩𝑟;  𝑦 = 𝑪𝑥          (26) 

 
where 𝑨𝐿𝐶 = 𝑨 − 𝑩𝒌, and the input is the reference  
𝑟. 

 
The state feedback gain vector should be chosen 

in such a way that eigenvalues are placed on the 
desired closed-loop poles.  

The position of the closed-loop poles was chosen 
according to the following equation: 
(𝑠 + 10)(𝑠 + 5)(𝑠 + 1) = 𝑠3 + 16𝑠2 + 65𝑠 + 50 = 0      (27) 
 

That is, with a dominant overdamped closed loop 
at -1. The two non-dominant poles were chosen 
trying not to obtain excessive high state feedback 
gains, as this may render saturation on the system 
input signal. Therefore, solving equation (28): 

  
(28) 

 
The state feedback gain vector 𝑘 obtained is 

given by: 
𝒌 = [−157.799, −16.1466,−0.03441]                (29) 

 
In this section, the simulations are presented to 

show the efficiency of the controller. The following 
Simulink program simulates the state feedback 
control system composed by  

      3 2
det det 16 65 50

LC
sI A sI sA Bk s s      
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[

𝑥̇1

𝑥̇2

𝑥̇3

] = [
0 1 0

96.5795 0 0.0195
−96.5795 0 −0.6608

] [

𝑥1

𝑥2

𝑥3

] + [
0

−1.0241
34.7768

] 𝑢 

𝑦 = [1 0 0] [

𝑥1

𝑥2

𝑥3

] 𝑎𝑛𝑑 𝑢 = 𝑟 − 𝒌𝒙              (30) 

 
The following figures show the graphs obtained 

by simulation using the Simulink program in Figure 
12. As seen in the graphs of Figure 13, Figure 14, 
and Figure 15, the simulations of the state feedback 
control system show good performance. It is also 
important to notice, from Figure 13 and Figure 14, 
that title angle  𝜃 has an overdamped behavior due 
to the chosen closed loop poles. Even though the 
initial conditions were set far from ideal positions. 
The initial conditions are set in the integrators of the 
Simulink program in Figure 12. Also, Figure 13 and 
Figure 14 show that the controller could take the 
output to , maintaining bicycle balance and 
stability, in approximately 4 sec. due to the selected 
closed loop dominant pole at -1. 

 

 
Fig. 12: Simulink program of the bicycle state 
feedback control system 

 

 
Fig. 13: System output that corresponds to the 
system inclination angle 

 
In Figure 15, it is observed that the control signal, 

which represents the voltage that would be applied 
to the DC motor of the flywheel, has a very large 
magnitude. This is because the states begin with 
values far from ideals; that is, to achieve stability 
and recovery of the bicycle balance does not require 
a high control effort. Additionally, and as expected, 
when the bicycle recovers position 𝜃 = 0°, the 
control signal 𝑢 → 0 so the flywheel velocity tends 
to zero, Figure 15. 

 

 
Fig. 14: system states: 𝑥1 = 𝜃 (orange line), 𝑥2 = 𝜃′ 
(blue line), 𝑥3 = 𝜔 (red line) 

 

 
Fig. 15: State feedback control signal 

 
To assess the performance of the state feedback 

controller, in the presence of output angle 
variations, with magnitudes that can occur in the 
real model, an input signal disturbance was added to 
the diagram in Figure 12 in the state 𝑥1 = 𝜃 , which 
corresponds to the tilt angle of the system, as shown 
in Figure 16. 

The disturbance is a pulse with an amplitude of 
0.1745, which would correspond to an inclination of 
10°. Furthermore, it occurs 6 seconds after the 
simulation starts and has a duration of 0.1 seconds. 

0o
 
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Below are the graphs of the simulation carried out. 
With the results of this second simulation, shown 

in Figure 17, Figure 18 and Figure 19, it is 
confirmed that the feedback system behaves 
correctly, as it was able to reject the perturbation 
maintaining bicycle verticality. The effort made by 
the controller, which is observed in Figure 19, is 
because the disturbance signal is square, but the 
disturbances or changes in the inclination angle of 
the real system are not so abrupt, so it was 
considered that the feedback loop behaves correctly. 

 
Fig. 16: Simulink diagram of the bicycle state 
feedback control system with perturbations in state 
𝑥1 = 𝜃 

 

 
Fig. 17: system output that corresponds to the 
system inclination angle in the presence of 
perturbation 

 

 
Fig. 18: system states: x1 = θ (orange line), x2 = θ ̇ 
(blue line), x3 = ω (red line) in the presence of 
perturbation 
 

 
Fig. 19: State feedback control signal in the 
presence of perturbation 

 
3.3  State Feedback plus PI Control Design  
As mentioned above, an alternative to avoid the 
need to cancel the zero at the origin of the system by 
using an integrator or a pole at zero in the controller 
to break the direct path between the unstable pole 
and the zero, as shown in Figure 4, so that the 
system is closed loop stable is the combining use of 
a State Feedback controller with a PI controller. 
Otherwise, an unstable controller is required. 

Following the strategy depicted in Figure 11, the 
results of a Simulink digital simulations of a control 
system using the estate feedback vector of equation 
(29) together with the PI controller of equation (31), 
are shown in Figure 20, Figure 21 and Figure 22. 

                                (31) 

 
 

 10 1
( )PIC

s
s

s



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 To better assess the performance of this 
approach, two perturbation signals were added: a 
perturbation in the form of a square signal of 
±0.1745, equivalent to ±10°, with a frequency of 
 0.25𝑟𝑎𝑑/𝑠𝑒𝑐  on position 𝑥1 = 𝜃 , and a random 
signal with an amplitude of as sensor noise of 
𝑥1 = 𝜃. 

From Figure 20, it is clear that the combination of 
the State Feedback controller and the PI controller 
presents an excellent response. Moreover, as shown 
in Figure 21 and Figure 22, the flywheel velocity 
and control signal are within physical limits. It 
should be noted that the peak values in the control 
signal are due to the sudden high perturbations 
affecting 𝑥1 = 𝜃. Also, the effects of the sensor 
noise were practically eliminated. 

 

 
Fig. 20: Tilt or inclination angle  
 

 
Fig. 21: Tilt angle rate 𝜃′  (blue line), ω (red line) 

 

Fig. 22: Control signal 𝑢 = 𝑉 
 
 

4  Implementation of the State 

 Feedback Controller  
The software configuration shown in Figure 23 
provided by [19], for the operation of the bicycle 
has the advantage that the state feedback controller 
designed in this work is easily implemented. The 
software configuration was developed using 
Matlab's Simulink, with a sampling time equal to 
T=0.01. 
 

Fig. 23: Implementation of the state feedback 
controller 
 

It should be noted that the state feedback control 
was designed based on a continuous state space 
representation of the system. However 
controversial, it is possible, in many cases, to 
implement digitally a controller, designed in 
continuous time, provided a good sample time is 

0.05


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selected, ensuring all system modes are properly 
sampled, and the digitalized controller does not 
differ significantly from its continuous counterpart 
in a range of frequencies well above the control 
system bandwidth. In this case, the sample period 
was chosen to satisfy a sampling frequency of 
628.32 rad/sec, well above the control system 
bandwidth of 1 rad/sec.  

Figure 24 shows the graphics of the results: 
inclination angle  , inclination angle rate 𝜃′ , angular 
velocity of the flywheel ω, and the control signal 
produced by the state feedback controller.  

Figure 24 shows that the State Feedback 
controller can maintain bicycle verticality under 
real-time conditions. That is, with initial conditions 
far from ideal and sensor noises. This explains the 
high-frequency components and the almost 
“chattering” control signal behavior.  Excessive 
control effort could be reduced if dominant closed-
loop poles are placed with a longer steady state 
time, although this could reduce the possibility of 
reaching stability. That is, the bicycle could lose 
verticality before the controller has enough time to 
recover it. 

  
Fig. 24: signals provided by the bicycle sensors 
while it is balancing: 𝜃  (red line), 𝜃′ (purple line), 
ω (orange line), and control signal (blue line) 

 
 

5   Conclusion 
The PID and state feedback controllers were chosen 
due to the advantages they have, which are: easy 
implementation, proven robustness and 
performance, and being well-suited for an 
engineering context. The implementation of the PID 
controller could not be carried out, due to the 
cancellation of the system zero at the origin; that is, 
the exact pole/zero cancellation at zero cannot be 
guaranteed due to the approximation of the integral 
action in the digital implementation of the PID 
controller, obtaining an unstable response. It is 
important to recall that stability margins are valid 
provided there are no open-loop pole/zeros 
cancellations. That is, Nyquist stability criteria 
cannot cope with no controllable or no observable 
systems, a phenomenon occurring under pole/zero 
cancellation.  Further analysis or a more complex 
linear controller is required to avoid canceling the 
process zero at zero, for instance, the combination 
of a State Feedback plus PI control scheme. On the 
other hand, the state feedback controller has 
excellent behavior without the need for 
cancellations. Although it does not include an 
integral action, it achieves the desired outputs 
because the signal reference is 𝑟 = 0 and the state 
feedback assures exponential and asymptotic 
stability in all the states so, 𝑥1 = 𝜃 → 0. Therefore, 
the bicycle maintains verticality.  

Nevertheless, and taking advantage of having 
access to the entire state vector, it would be 
advisable to design and implement a non-linear state 
feedback control such as a "Back Stepping" control. 
In this way, a more direct control could be designed 
for each state. However, as shown by equations 
(10), (11), and (17) this may not be a simple task as 
the system degree is 3 while its relative degree is 2. 
Also, Sliding Mode control with “super twist” could 
be analyzed.  
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