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Abstract: - Motor imagery training has been indicated to be effective in motor function rehabilitation and motor 
skill learning. The neural mechanism underlying motor training has attracted increased neuroimaging 
explorations. Related neuroimaging studies demonstrated that resting-state can offer the possibility to examine 
the neural mechanism of motor execution training. However, motor imagery training, as another part of motor 
training, has been few investigated. To address this issue, eigenvector centrality mapping (ECM) method was 
applied to explore functional connectivity of resting-state in motor imagery training. As a data-driven analysis 
method, although ECM can assess the computational measurement of eigenvector centrality for capturing 
intrinsic neural architecture on a voxel-wise level without any prior assumptions, it is still limited in application 
for making pseudo enhancement in some nodes or zero centrality in all nodes. In this study, we proposed an 
improved ECM by adding threshold, dispersion coefficient, weighted coefficient and the initial parameters 
referring to Google Webpage search ranking algorithm, and applied the proposed ECM to functional 
connectivity measure of resting-state before and after motor imagery training. The proposed ECM showed the 
advantage of automatic discharge weak links and the enhancement in node ordering resolution comparing with 
the original ECM. The results from voxel-based comparison of the centrality between the resting-state after and 
before motor imagery training revealed that the significantly increased eigenvector centrality was detected in 
the precuneus and medial frontal gyrus for the experimental group while no significant alterations were found 
for the control group after training. These alterations may be related to the spatial information integration and 
inner state modulation of motor imagery training, and further provided new insights into the understanding of 
the neural mechanism underlying motor imagery training. 
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1 Introduction 
Motor training, including motor execution and 
motor imagery training, has been indicated to be 
effective in mental disorders rehabilitation and 
motor skill learning [1,2]. Motor imagery training, 
in particular, brought about new prospect for 
rehabilitation of those who had completely lost their 
motor functions. Although many research confirmed 
that cortical activities and even the interactions 
between brain areas can be altered by motor training 
[3,4], most of them were based on motor execution. 
The neural imaging research on motor imagery 
training is still limited and the neural mechanism of 
motor training is open to further exploration. 

Recently, many researchers have put forward 
that resting-state may contain rich information on 
the neural mechanism of motor execution training 
and may enable a more complete detection of a 

specific neural system [5,6]. Many analytical 
measures were suggested by research on resting-
state to estimate functional connectivity, such as 
correlation, graph theory and so on. These metrics 
usually require certain priori knowledge to localize 
regions of interest and choose an appropriate 
analytical model. Eigenvector Centrality Mapping 
(ECM) is a data-driven measure, which can assess 
the significance of a specific brain area in functional 
connectivity without any priori assumption [7]. 
Using this method, Taubert et al. studied the impact 
of motor execution training on resting-state 
functional networks [8]. 

Although the data-driven ECM can capture 
intrinsic neural architecture on a voxel-wise level 
through the computation of eigenvector centrality, 
its application is still confined to fMRI data. Firstly, 
ECM takes every voxel as a network node and 
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generates a fully connected network with a 
tremendous topological structure. Then, the noise in 
fMRI images may interfere the similarity between 
nodes and affect the network topology, thus leading 
to the emergence of weak connections. Secondly, 
while calculating the centrality of a given node, 
ECM takes into account all weighted centrality of its 
neighbor nodes, which may result in the pseudo 
enhancement of this node [9]. Moreover, the 
weighted centrality may also lead to zero centrality 
in all nodes after iterations [10]. 

In this study, inspired by Google’s Page Rank 
algorithm, we proposed an improved ECM by 
introducing a threshold, a dispersion coefficient, a 
weighted coefficient and initial parameters and 
applied the proposed ECM to functional 
connectivity measure of resting-state before and 
after motor imagery training. Compared with 
standard ECM, the proposed ECM has distinct 
advantages in automatically discharging weak 
connections and promoting the discrimination in 
centrality of different nodes. We got some 
meaningful results that may provide new insights 
into the neural mechanism underlying motor 
imagery training. 
 
 
2 Methods and materials 
 
 
2.1 Standard Eigenvector Centrality 
Mapping 
Eigenvector centrality mapping (ECM) specifies an 
eigenvector centrality value to each voxel in the 
brain. As a result, a voxel has a higher value if it is 
more strongly correlated with other voxels. The 
ECM analysis includes four steps. First, a whole 
brain mask is defined according to a prior 
anatomical automatic labeling (AAL) atlas which 
contains 90 areas (40,743 voxels in total). Second, 
time series are extracted from each voxel in the 
defined mask. Linear correlation, which acts as a 
metric of functional connectivity, is calculated 
between any pair of nodes as follows: 
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Where xi(t), xj(t) (t = 1,..., T = 200) represent the 
time series of voxel i and j respectively. Then we 
can get a similarity matrix A and we replace rij in A 
with rij + 1 to make sure that all values in A are 
positive [7]. After that, using the following formula, 

the eigenvector centrality value of voxel i is defined 
as the i-th entry in the normalized eigenvector x that 
belongs to the largest eigenvalue λ of the similarity 
matrix A. 
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Where μ = 1/λ, and aij represents the element in 
row i and column j of matrix A. 
 
2.2 The choice of network threshold 
In order to remove weak connections ， which 
indicate random noise or indirect connections, we 
introduced a threshold to A so as to filter 
connections [11]. First of all, we sorted the z-scores 
of correlation coefficients in a descending order and 
set the threshold zT to a significance level of 5% of 
the sorted z-scores as follows: 
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Then zT was transformed to its corresponding 
correlation coefficient threshold rT: 
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All connections with an absolute correlation 
coefficient lower than rT were taken as weak 
connections and were removed from further analysis. 
 
2.3 The optimization of algorithm 
parameters 
Inspired by Google’s PageRank algorithm, we 
introduced the initial parameter β, dispersion 
coefficient k, and weighted coefficient α  [12-14] 
based on formula (2): 
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Where n is the number of nodes in the network 
and α denotes the dependence of neighbor nodes on 
a given node ranging from 0 to 1. β denotes the 
initial value of each node before iteration. The ratio 
between α and β reflects how much a node’s 
significance is influenced by its neighbor nodes. If 
α=0, the node’s significance is completely 
independent from its neighbors, and if β=0， the 
node’s significance is largely influenced by its 
neighbors. k denotes the dispersion value of all the 
neighbors’ importance to the given node and is often 
chosen according to the number of connections of 
each node [12]. 

Similar to Google’s PageRank algorithm, we set 
α=0.85 and β=1-α=0.15. Given the value following 
“+”, 0.15 is supposed to be a large value, which 
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determines to a large extent the centrality values of 
independent nodes in the network. However, these 
independent nodes usually turn out to be the least 
important nodes in the network, so we set β=(1-α)/n. 

To alleviate the excessive impact of the neighbor 
nodes on a given node, we assigned the centrality 
value of the given node to all its connected neighbor 
nodes evenly according to the following formula: 

( , )∈
= ∑ jk

j k E
k a     (6) 

Where E denotes the set of all the nodes in the 
network. 
 
2.3 Motor Imagery Training Experiment 
and Data Preprocessing 
Fourteen right hand-dominant subjects (seven 
males, mean age: 22±2 years) participated in the 
training, and another twelve right hand-dominant 
subjects (five males, mean age: 24±2 years) were 
recruited as a control group. Participants with 
histories of neurological disorders, psychiatric 
disorders, experience with typewriters, or any 
experience learning to play musical instruments 
were excluded. All participants provided written 
consent according to the guidelines set by the MRI 
Center of Beijing Normal University. 

The experiment procedure included a pre- 
resting-state session, two pre-task sessions, a motor 
imagery training period, a post- resting-state session 
and two post-task sessions. Here, only the resting-
state data was examined. In each 10-min resting-
state session, subjects were instructed to keep their 
eyes closed, relax their mind, and remain motionless 
as much as possible. In the training period, all 
participants were instructed that from their index to 
little finger, each of the four fingers of their right 
hand represented a single digit number: one, two, 
three, and four. Fourteen motor imagery practice 
sessions were employed over 14 consecutive days to 
make sure the sufficient training. Each training 
session consisted of two 15-min sections, 
metronome-pacing and self-pacing respectively. In 
each section, participants were instructed to imagine 
tapping sequence 4–2–3–1–3–4–2 with their right 
hand fingers repeatedly as fast as the pace of the 
metronome or the pace controlled by themselves for 
30 seconds with an interval of 30-s rest. The training 
period were only performed in the experimental 
group while participants did not attend any training 
during the 14 days in the control group. 

Brain scans were performed at the MRI Center of 
Beijing Normal University using a 3.0-T Siemens 
whole-body MRI scanner. A single-shot T2*-
weighted gradient-echo, EPI sequence was used for 

the functional imaging acquisition, with the 
parameters: TR/TE/flip angle=3000ms/40ms/90°, 
the acquisition matrix was 64×64, the field of view 
(FOV) was 240 mm and slice thickness=5 mm with 
no inter-slice gap. 32 axial slices parallel to the AC-
PC line were obtained in an interleaved order to 
cover the whole cerebrum and cerebellum. 

The functional images of both groups were first 
realigned, spatially normalization, re-sliced to 
3×3×4 mm voxels and smoothed with a 8×8×8 full-
width at half maximum (FWHM) Gaussian kernel 
by SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 
 
 
3 Results 
 
 
3.1 Simulations 
To verify the effectiveness of the proposed ECM, 
we used several simulated network topological 
graphs with different structures (Fig. 1) comparing 
with the standard ECM. The centrality values of 
each node are shown in Table 1 and Table 2. 
 

 

Fig. 1 The simulated network topological graph. 
 
As shown in Table 1, the centrality value of node 

B in network (a) is higher than that of node A due to 
the fact that the standard algorithm takes into 
account all the neighbor nodes’ influence while 
calculating the centrality value of a given node. 
Apparently, node A controls other nodes and should 
be the center of network (a). The proposed ECM 
confirmed this result. In network (b), suppose the 
centrality value of node A is zero ， then its 
contribution to its three neighbors should also be 
zero. Since the node at the top is only influenced by 
node A, its centrality value also should be zero. We 
can conclude that after several iterations, the 
centrality values of all the nodes in the network 
should be zero. Distinctly, this can be avoided by
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the proposed ECM due to the introduction of initial 
parameters. 

Table 2 shows that the discrimination of centrality 
values is different between the standard and 
proposed ECM. The centrality values of the proposed 
ECM present a much more prominent hierarchical 
structure to distinguish the significance of different 
nodes by increasing the difference between centrality 
values of nodes belonging to different level. Nodes 
of less significance are marked with lower centrality 
values and nodes of more significance are marked 
with higher centrality values. This reveals that the 
proposed ECM can highlight the significance of each 
node in the network in a much more clear way 
without changing the original significance rank. 

 
3.2 ECM of Resting-state during Motor 
Imagery Training 

After preprocessing, the data was analyzed using the 
proposed ECM. For each subject in the two resting 
scans, an ECM containing the eigenvector centrality 
value of each voxel in the mask was obtained. At 
last, a paired t-test was performed between the ECMs 
of pre- and post- resting scan. At the statistical 
analysis level, a voxel-cluster threshold correction 
was used to control the Type I error rate in the 
whole-brain statistics, yielding an overall corrected 
alpha rate of p<0.05. The cluster-level inference was 
performed within SPM8. 

Fig. 2 shows the group averages of eigenvector 
centrality maps. After motor imagery training, the 
significantly increased eigenvector centrality was 
detected in the precuneus and medial frontal gyrus 
(MFG) for the experimental group while no 
significant alterations were found for the control 
group (Fig. 3 and Table 3). 

 
 

Table 1. Centrality values of nodes in network (a) and network (b) of Fig. 1 calculated by the standard and 
improved ECM. 

order (a) (b) 
standard node improved node standard improved node 

1 0.513612 B 0.696271 A 0 0.798813 A 
2 0.296226 A 0.683440 B 0 0.402367 E 
3 0.038032 C 0.098099 C 0 0.375417 B 
4 0.038032 D 0.098099 D 0 0.189100 D 
5 0.038032 E 0.098099 E 0 0.107941 C 
6 0.038032 F 0.098099 F 0 0.107941 F 
7 0.038032 G 0.098099 G - - - 

 
 

Table 2. Centrality values of nodes in network (c) and network (d) of Fig. 1 calculated by the standard and 
improved ECM. 

(c) (d) 
order standard improved node order standard improved node 
1 0.4238 0.5837 B 1 0.4428 0.8623 A 
1 0.4238 0.5837 C 2 0.4209 0.3294 B 
2 0.3960 0.3851 A 2 0.4209 0.3294 C 
3 0.3478 0.2063 D 3 0.3353 0.0993 D 
3 0.3478 0.2063 E 3 0.3353 0.0993 E 
3 0.3478 0.2063 F 3 0.3353 0.0993 F 
3 0.3478 0.2063 G 3 0.3353 0.0993 G 
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Fig. 2 Group averages of eigenvector centrality maps. (a) pre-resting scan, experimental group; (b) post-

resting scan, experimental group; (c) pre-resting scan, control group; (d) post-resting scan, control group. 
 
 

 
Fig. 3 Statistical parametric map of eigenvector centrality enhancement in experimental group induced by 

motor imagery learning (p<0.05, cluster size>41, FDR (false discovery rate) correction). 
 
 
 

Table 3. Brain regions where eigenvector centrality 
significantly increased in the resting-state after motor 
imagery training in the experimental group. 

Region Brodmann
’s Area 

MNI 
coordinates tmax 
x y z 

Left 
precuneus BA 7 -3 -64 42 4.12 

Left medial 
frontal 
gyrus 

BA 10 0 59 -2 4.38 

 
 
4 Discussion and Conclusion 
Aiming at solving the pseudo enhancement and the 
zero centrality in ECM, we referred to Google’s 
PageRank algorithm and improved ECM through 
introducing a threshold, a dispersion coefficient, a 
weighted coefficient and initial parameters. The 
proposed algorithm has prominent advantages in 

removing weak connections automatically and 
improving the discrimination in centrality of 
different nodes. We applied the proposed ECM to the 
resting-state in motor imagery training and the 
results revealed that the eigenvector centrality of two 
brain regions, including the precuneus and medial 
frontal gyrus (MFG), were significantly increased by 
the motor imagery training. 

Previous studies have suggested that the MFG 
may be involved in inner state modulation and motor 
planning, as well as complex non-motor tasks such 
as decision making, discrimination, computation, and 
reasoning [15,16]. The MFG was implied to be 
associated with the ability to reflect on one’s own 
mental states and self referential processing such as 
mediate less-deliberate, emotion-driven influences 
on action selection [17, 18]. It was also suggested to 
be important in allowing subject to guide actions by 
internal or overarching plans so as to achieve an 
optimal behavior performance [15]. Thus, we 
proposed that the changes in MFG may be the result 
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of the modulation of subjects’ inner state to get an 
optimal behavior and decisions about motor plans. 

The role of precunues in motor imagery has been 
suggested that it could be activated when subjects 
learned sequences of finger movements, indicating 
that precuneus may be related to spatial motor 
sequence information integration and retrieval [19]. 
A Magnetoencephalography (MEG) study confirmed 
that the precuneus may involve in retrieval of spatial 
information and/or setting up spatial attributes for 
motor imagery [20]. Therefore, the alteration of 
precuneus in the current study may due to spatial 
information processing and retrieval. 

In summary, the results observed in this study 
confirmed the effectiveness of improved ECM and 
the alterations in the resting-state induced by motor 
imagery training, extending the understanding of the 
neural mechanism underlying motor imagery 
training. 
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