
Software Identifier Naming Conventions & Dictionary

DOV BENYOMIN SOHACHESKI

Department of Software Engineering

SCE - Shamoon College of Engineering

84 Jabotinsky St. Ashdod, 77245 Israel

ISRAEL

YOTAM LURIE

Department of Management

Ben-Gurion University of the Negev

P.O.Box 653, Beer-Sheva, Israel 84105

 ISRAEL

SHLOMO MARK

Department of Software Engineering

SCE - Shamoon College of Engineering

84 Jabotinsky St. Ashdod, 77245 Israel

ISRAEL

Abstract: - Software developers have been presented with so many tools meant to assist then during the

development process. Tools like autocomplete, intelli-sense, linters, and other static analysis solutions. All such

tools have one underlying goal, to promote productivity and improve quality. Much research has been conducted

on the topic of software quality and its direct benefits both during and after the development cycle. Various

methods of measuring and improving quality in software products have been implemented at a grand scale.

However, software developers are still left with the choice of implementation details. One such detail is the choice

of identifier names in the code written. Few publications have focused on conventions, guides, or best-practices

on the topic of identifiers naming choices (not to be confused with coding styles). Much time and energy is

misused by developers while choosing an appropriate identifier name, as well as by other developers later on

when trying to understand the choice made by their colleagues. By aggregating and compiling a list of readily

available identifier names that developers can choose from, will allow them to focus on other keys aspects of

development.

Key-Words: - Quality, Identifiers, Styles, Conventions, Best-practices.

Received: January 30, 2021. Revised: June 28, 2021. Accepted: June 30, 2021. Published: July 6, 2021.

1 Introduction
Philosophy debates whether humankind

fundamentally obeys a predefined set of universally

accepted truths. For example, we are contracted by

the confines of the laws of physics and nature. The

limit of these confines is credited for creating the

bounds of our options, choices, and decisions. The

accuracy of such a proposition is subject to rebuttal

[1] because the definition encompasses a broad scope

of all of humankind and its absoluteness.

Nonetheless, these propositions can be partially

accepted, in the sense that we do indeed bear

engraved traits or instincts that regulate our habits

and demeanor. Our customs and conduct are

consequences of an intrinsic natural process that is

not governed by human made law [2]. Therefore, it is

natural and even expected for a group of people to

absorb a given concept with distinctively contrasting

perceptions.

Software development can be conducted by any

person willing to adhere to a set of predefined rules

and procedures for a given software language.

Software engineering on the other hand, is a science

that invests in the human-factor along-side the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 21 Volume 9, 2021

mundane development of code. Even during its

infancy, software engineering introduced many new

methods of thought and development schemes that

were also popularized and implemented in other

scopes of science. Since its advent, the various

methods have sustained scrutiny and reform at a rate

never before seen in other fields of engineering.

Methodologies and practices, previously accepted

and even deemed preferable, have grown outdated

and impractical [3]. The evolution of the methods

was a by-product of various obstacles. One

fundamental deficiency was the absence of a

profound understanding of the human factor and

its influence on the software process. Agile, a

contemporary and widely implemented

methodology, attempted to repair the

shortcomings of other methods by headlining the

human factor and ergonomics [3]. Agile principles

lead a project throughout its various lifecycle

approaches and even continues with post-completion

guidance. Agile proposes numerous conventions and

patterns concerning the actual development process

[4] [5] [6]. It also channels on the mechanisms to

boost better communication between the various

stakeholders. Factoring all its interpersonal

contributions and methodological enhancements,

nevertheless, agile does not impose any provisions on

the implementation of a project's workflow.

Therefore, coding styles and conventions remain an

organizational choice.

Among the programming paradigms, there are

three major classifications: functional, object-

oriented, and procedural. Paradigms are usually

connected to a programming language's

execution model and the sequence in which

operations are invoked [7]. Still, a paradigm does

not impact the styles or conventions used in that

programming language. One of the first works,

outlined by Brian W. Kernighan, presents the notion

of how to structure code, obtain user input and

output, and scaffold project architectures [8].
Although Kernighan's code snippets are nearly

40 years old, we can extract his principle

argument that programming styles assist in

making code easier to understand and consume.

Many new programming languages have been

introduced since its publication and yet, the

underlying teachings are still timeless and valid.
All programming languages have individual

"flavors" and conventions. An organization's

decision to utilize a given coding flavor is a choice

that lands under the auspices of software quality. In

order to preserve a fluid style within organizations, it

is customary to adopt commonly known style guides

distributed by leading actors in the software

development field. A style guide is a list of

recommendations and practices proven for enhancing

program comprehension and readability. Software

programs are a series of predefined keywords,

syntactical structures, and the naming of variables,

functions, methods, and classes known as identifiers.

Since developers are free to choose names for

identifiers in their code, it is crucial that guidelines

and conventions are followed to guarantee

consistence throughout the codebase. Agreeing on a

certain style guide is more than just a preference, it

allows for the extraction of quality metrics [9]. "Code

smells", addressed in the upcoming section, is a

contemporary metric scale for software quality [10]

[11]. The worldwide demand and consumption of

technology is perpetually growing; technological

changes are frequent and aggressive. Software

engineering is therefore compelled to remain fluid in

its supplying solutions at such an accelerated rate.

Like many other evolving fields, software

engineering is still ratifying many of its core concepts

and principles. Many definitions of principles and

approaches have yet to be finalized in academic

literature or applied in the software industry. While

other fundamentals are still subject to debate. One

substantial theme in software engineering that has yet

to detail its definitions unanimously, is the methods

and scales of measurements, as they pertain to

software quality. The topic of software quality has

gained much popularity over the years; as such, many

new methodologies and approaches have placed

quality at the epicentre of their proposed workflows.

With the increase of quality measure and tooling,

projects can drastically raise the overall level of the

product quality. The above-mentioned concern can

be resolved by the establishing of identifier

dictionary discussed in upcoming sections of this

paper.

2 Scientific Background
The following scientific background includes an

overview of the relevant theoretical and practical

concepts for the research. First, a brief summary of

the current state of code conventions and available

tooling will be presented. Subsequently, we will

explore the correlation between software assessment

tools and software quality.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 22 Volume 9, 2021

2.1 Linters
The word lint comes from English and refers to the

"fuzz consisting especially of fine raveling and short

fibers of yarn and fabric" [12] that form small balls

that dangle from garments. "Lint" was first

introduced to software engineering by Stephen C.

Johnson of Bell Labs (a prime contributor to UNIX)

[13], he projected the English understanding of the

word lint to the software realm by developing a tool

named "lint". The tool analysed C code and in

Johnson's words [14] "enforces the typing rules of C

more strictly than the C compilers". Today, many

automated scripts have been authored for the

majority of programming languages that follow the

same original principles as Johnson's lint, they are

commonly known as "linters". They are

commissioned to statically analyse code and emit

warnings for deviations from style guides [9], or

common traps that usually evolve into bugs. A linter

analyzes code based on a predefined collection of

rules and preferences. Linters come predefined with

a set of essential rules that satisfy a large scope of

software code. It is important to note that the linting

process is meant to assess code quality and is not a

related to specific programing paradigm. Pylint used

to lint Python, and ESLint used for Node.js or

Javascript are two well-recognized linters.
Projects that utilize linters can overwrite or extend

any rule to conform to their organizational style of

coding. Research has determined that roughly half of

open-source projects implement linting as part of

their project workflow. However, the majority of

those projects rely on the prebaked set of rules and do

not override or extend the defaults [14]. Other

research has examined the cognitive inconsistency in

open-source projects and its effects on attracting new

contributors to the project [15]. Meaning, the absence

of a uniform style and flow within the code base,

leaves contributors feeling disoriented, not knowing

which style or form to use for their contribution.

Linters are capable of identifying and reporting

several groups of infractions listed briefly below in

no order of significance or severity [9]

1. "Errors": normally signify concrete flaws that

will propagate during compilation. For example, the

invoking of an undefined method or other language-

syntactic errors.

2. "Warnings": are less severe than errors and in

some cases will never lead to an actual error. They

can be classified as not complying to best-practices.

For example, logging information to the console,

which can be considered inappropriate in production

environments.

3. "Code smells": refer to code that can be

restructured or refactored to improve the readability

and maintainability of the code. This category will be

discussed further in an upcoming section. An

example of a code smell can be the depth complexity

of function or the duplication of code blocks.

4. "Conventions": are guidelines that concentrate on

structural quality and fluidity of code. For example,

the location of the placement of curly braces (i.e. {}),

the maximum amount of blank lines between

methods or blocks, as well as the naming of files,

methods, and variables.

2.2 Style Guides
One of the foundational traits of linters is to drive

developers to adhere to a defined style best-practice.

As mentioned above, conventions are a collection of

practices that suggest a certain style or practice for

coding. Many organizations publish styles guides in

the form of best practices for coding readability.

Google provides style guides for C++, Java, Python,

and nearly a dozen additional languages. Their goal

is clearly asserted as being, "much easier to

understand a large codebase when all the code in it

is in a consistent style" [16]. Other companies,

like Airbnb, are more opinionated in their

claims that their style guides are, "a mostly

reasonable approach to JavaScript" [17]. ESLint

offers the possibility to enable recommended

rulesets based on popular style guides, such as

that of Airbnb. The principal objective of

guides and best-practices is to separate arbitrary

decisions making from the developer and make

the codebase more maintainable and readable.

In essence, several developers can commit code

to a common repository and lend the impression

the code was authored by a single developer.

2.3 Code Quality & Maintainability

There are many opinions related to the definition of

quality in software engineering. The following

section presents the approach adopted during our

conducted research. The word "quality" is generally

understood to be, "degree of excellence" or a

"distinguishing attribute" [18]. In other words,

quality is the measure of a positive value that an item

or concepts embodies. The perception of "code

quality" can be assessed on an adversity basis by

software developers. Some developers prefer concise

code and regularly refactor their code to obtain pure

and sparse code blocks. While other developers target

verbose code that is self-explanatory [19]. Both

developer types consider their approach to be of

higher quality and that of their peer to be feeble and

lacking in quality. J.M Juran provides two

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 23 Volume 9, 2021

approaches to the definition of code quality in

software engineering:

1. Quality is a measure of product features which

meet the customer's requirements and thereby

provide product satisfaction.

2. Quality means the freedom from deficiencies

[20]

The first definition simply relates to accomplishing

the customer's requests and can relate to quality as

more of a business value than a software value [21].

The second definition relates to quality as a state of

the product. Meaning, the product has an absence of

errors that would in turn require the development

team to repair or maintain the code in order to repair

them. It is important to note that both definitions do

not relate to the actual coding styles or conventions.

2.4 Code Smells

Refactoring is the process of enhancing code quality

without appending new features [11] Software

systems are not shielded from discord, on the

contrary, due to their complexity they are more prone

to disarray and chaos than other physical products.

During the lifetime of a software system, it will be

subject to constant revision and as well as extensions.

As such, the overall quality of the codebase begins to

decline, necessitating the use of refactoring.

Some of the warnings emitted by linters advise of a

possible refactor in the future. This measure is called

a bad code smell [9]. Moreover, code smells are

segments of code, which, under the current state of

the system, can achieve an improved quality rating.

These sections are also common pitfalls for

developers when maintenance is required [10]. Beck

and Fowler introduced 22 code smells and their

correlated strategies for refactoring and eliminating

the smell [11] [10].

3. Research Objectives and Expected

Significance.
The human factor directly impacts the process'

quality [22] [3]. Teamwork and collaboration are at

the core of development lifecycle. Communication,

interaction, and understanding among team members

are continuous and central to the success of any

project. The human factor of communication that can

benefits a project is the ability of team members to

clearly express their perspectives both verbally and

non-verbally. Research has been conducted on the

performance improvements amongst teams whose

members yield cognitive similarities [23]. The

following section assumes that a team project was

developed containing no code-smells and complied

to a style recommendation. When members of an

organization or team come in contact with program

code authored by others, they are faced with the

challenge of understanding its purpose. Even the

most experienced developers are forced to apply the

mindset of the programmer who originally drafted

the code to comprehensively discern their intentions

[9]. In many cases, the code is intrinsically

complicated (and not due to its logic or algorithm), as

such, would pose a difficulty for the original author

themselves. In cases where software quality and code

smells are fundamental concerns that are baked into

the software process, there may still exist a

perception or cognitive par that must be bridged in

order to understand the code.

Software code consists of predefined keywords and

syntactical structures that are language specific and

as well as the naming of variables, functions,

methods, and classes known as identifiers.

Developers are granted the freedom to choose names

for identifiers in their code. Such identifiers can be

categorized in one of two ways:

1. Obscure: Identifier names that are not dictionary

terms or spoken words and introduce ambiguity to

the codebase. This family can be further

partitioned:

2. Under certain circumstances, a developer can

deduce the meaning of the identifiers only with

when assisted by the context in which it was used.

For example, using the variable name e in the

context of error-handling or i in a looping

structure have no meaning when presented

outside their context.

3. Other names have no innate meaning whatsoever

and are completely arbitrary. Even when

accompanied by their code context they do not

contribute a deeper understanding behind the

naming choice or the intent of the code itself. For

example, variables named a, b, c or n1, n2, and

tmp.

2. Implicit: For the most part, there are no

rights or wrongs when determining identifiers.

However, the developer should possess the desire to

portrait the unit under development, therefore, the

names chosen will usually directly relate to their

personal understanding of the feature being

developed and the context in which it exists. This

family can be further subdivided into two categories:

1. The identifier names preferred by the developer

would match that of the majority of other

developers tasked with coding the same unit.

2. The identifier can be understood without delving

into the context of the unit being developed, but

would not likely be a first choice for the majority

of other developers. Our perception of the domain

and context may vastly differ from a that of a

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 24 Volume 9, 2021

colleague developing alongside us. These

deviations introduce new cognitive complexities

to the comprehension of software code. For

example, the procedure of saving information into

a database can be named store, save, persist, or

update. The first three options imply retention for

future use, whereas update can be considered

equivocal and only fully understood given the

context of its use.

This research pertains to a subset of software

development organizations. Members of the subset

are assumed to be:

1. Organizations that implement and conforms

to predefined coding convention and style

guide.

2. The organizations also stress the importance

of software quality during the development

process.

These subsets were chosen in order to refine our

results sets and sift away intrinsically poor-quality

code. This can be compared to someone seeking to

learn a foreign language would prefer to learn from a

native speaker, guaranteeing quality results. With

these assumptions in mind, the following section will

present the research objectives. The overall aim of this

research is to assist software developers throughout

the development process in improving the language

infused into the codebase. Meaning, presenting the

developer with a predefined dictionary of terms and

their association to a given context.

In conclusion, this research project has seven aims:

Aim 1: Define the membership characteristics for the

obscure and implicit identifier categories.

Aim 2: Textually mine identifiers in software code to

forge a preliminary dictionary of terms.

Aim 3: Forge a final dictionary by classifying terms

into the above-mentioned categories.

Aim 4: Suggest implicit identifier names and warn

upon the use of obscure names to developers during

the development process.

Aim 5: Inspect the impediments and constraints in

applying such concepts in practice.

Aim 6: Measure the cognitive benefits and

comprehension of code when using naturally

understood terms.

Aim 7: Determine the boundaries of Natural

Language Process (NLP) [24] processing as it pertains

to analyzing a codebase for departures from accepted

naming conventions.

4. Detailed Description of the Proposed

Research.
4.1 Research Methods

The proposed research proceeds from the assumption

that software quality can be improved when implicit

naming conventions are chosen over obscure ones.

Moreover, identifier names with a higher rank

present an even greater improvement in quality than

that of less commonly used names.

4.2 Methods

The overall research project employs a mixed

research method, with elements of both quantitative

and qualitative research [24]. Data will be collected

from by means of text mining and textual analysis of

readily available online software projects. This

approach requires the development of a software tool

to assist in the gathering and extracting of relevant

data.

The project aims to provide a strong, empirically

based assessment of the current state of software

styles and conventions. We will also attempt to

identify the circumstances and consequences for

deviating or disregarding conventions altogether.

That is, all elements of the study bestow the same

general theme and apply the same data samples, yet

have different scopes, variables, and designs.

4.3 Sampling Strategy

We recognize a software developer as a person

concerned with all aspects of the software

development process. That includes, but is not

limited to, people conducting research, analysis,

design, programming, testing, and management

activities in the field of software development. It also

encompasses the development of software for the

purpose of work, as a hobby, or simply from passion.

Obtaining sample data that would generalize the

software developers’ population is a challenge; since

we cannot accurately distinguish the number of

software developers worldwide, nor have the means

of reaching them. Following several previous studies

[25], we will rely on the online social community

known as GitHub (github.com) to capture pertinent

samples for our research.

GitHub is a software development platform that

enables hosting of software assets, code reviewing,

project management, open collaboration, and more.

The GitHub community is considered a social coding

community, the second in popularity to Facebook,

with more than 800 million registered users of which

320 million are active monthly [26]. The design of

the project, as mentioned above, consists of data

analysis of openly available source code (from

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 25 Volume 9, 2021

GitHub) in order to classify the naming conventions

adopted in software repositories. The classification

will be converted into a dictionary of terms, itemized

by popularity and assumed degrees of understanding.

The actual methods used to extract data from the

online packages is described in the ensuing section.

5 Research Design
5.1 Data Analysis Design

We chose to use GitHub as a source for the data we

will study during the research process due to its

availability and wealth of options. GitHub is non-

discriminant in the languages it supports, however,

Javascript is unquestionably the most popular

language on the platform [27]. Furthermore, a

fundamental part of the Javascript ecosystem, like

Node Package Manager (NPM), intrinsically

encourage open-collaboration. Codebases that

welcome collaboration habitually contain code that

was authored by developers from ranging educational

backgrounds and demographic diversity. It is

plausible that the sole similarity connecting two

collaborators is the project they contribute to. The

diversity among collaborators will be to our

advantage, as it will afford a rich and extensive

spectrum of identifier name for our dictionary.

Website user experience can be accomplished using

Javascript. As such, web-designers, who usually

focus on design aspects and not formal engineering

tasks [28], attribute a large portion of the

implementors of Javascript. However, we will omit

browser-based Javascript for a reason addressed in

the subsequent paragraph as it regards to Python.

 A second language that we considered to analyze

was Python. We elected not to analyze Python

programs for the following key reason. Python is

regularly used as a scripting language by scientists,

IT, and even programmers to accomplish single-

responsibility tasks [29]. These tasks are contained in

single files that maintain all their dependencies.

Therefore, architecture, styles, and conventions are

not provided precedence.

5.1 Data Analysis Tool

We designed and developed a software tool to assist

in the necessary extraction of statistical data from

online software projects. The tool was developed

using the Node.js programming language as a base,

with compulsory modules written in Python. The tool

is packaged with an intuitive user-interface, allowing

any locally-stored project to be analyzed. There are

two main branches of the tool: the analysis pipeline

and the result reports.

The analysis pipeline is composed of several non-

concurrent, consecutive steps that resolve a software

project into its key components. Once a project root

directory is selected, the following steps are

executed:

1. Load Project Files: starting at the project's root,

all files are recursively read into memory. For

performance reasons, only the path to the file

and its related meta-data related to the file are

loaded into memory and not the content of the

file itself. We decided to ignore the actual

content of the files at this stage in the pipeline

for performance reasons; the file may be

completely ignored in the subsequent step of the

pipeline.

2. Ignore Unnecessary Files: a file is considered

unnecessary and will be ignored from the project

analysis if does not meet a set of predefined

criteria. The criteria we established are based on

our assumptions presented in the section on

sampling strategies. The list of criteria is as

follows:

1. Only JavaScript: the file must be a

JavaScript file. Therefore, we ignore all files

that do not have the extension js. We

recognize the fact that file extensions do not

guarantee the actual content type of the file.

We also recognize that modern JavaScript

can be written using other extensions, in

which case a transpiler is utilized to convert

the code to native JavaScript. Nonetheless,

when applying a more rigorous filter we can

be assured that our results do not contain

irrelevant code.

2. Development Directory: the file must be

located in a directory that contains

development code. Similar to the previously

mentioned rule, this filter is rather strict in its

refinements. All files found in a distribution,

testing, or configuration directory will be

ignored. This allows us to focus our analysis

on code that was intended for development

and not the minified or compiled (per-se)

code intended for the end user.

3. Non-Hidden Files: all hidden files and

folders are removed from analysis. This

usually includes configuration files or Git

repository history details.

3. Extract Identifiers: at this point in the

pipeline, all files are considered pristine. The

content of the files are loaded into memory in an

asynchronous manner. Once all files have been

loaded, they are iterated over and transformed

into a collection of tokens, while filtering

language specific keywords and constructs.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 26 Volume 9, 2021

Each token is in essence an identifier name and

the location in the file (line and column) in

which the identifier was found.

4. Run NLP: using the collection of identifiers

from the previous pipe, we attempt to build

language context data for each identifier. The

context attempts to split the identifier into

separate words. For example, for the identifier

setDomainResolutionProtocol, the words set,

domain, resolution, and protocol will be

extracted. The extraction can parse identifiers

written using the four common styles:

camelCase, PascalCase, kabob-case, and

snake_case.

We implemented spaCy in our project as a third-party

NLP engine because it is open-source and already

collection of comprehensive, pertained models. Once

the words have been separated, they are analyzed as

a sentence by the NLP engine. I.e., the identifier

setDomainResolutionProtocol will be read as "set

domain resolution protocol". The NLP engine

responds to the sentence query with a mapped

annotation and lemma for each word in the sentence.

A lemma is a "reduced inflectional forms and

sometimes derivationally related forms of a word to

a common base form" [30]. For example, when "set

sorting algorithm" is queries, the word "sorting" is

reduced to the lemma "sort", with a verb annotation.

The last portion of the context processing is checking

the rating or frequency of the queried word. Rating

and frequency are based on Google's N-Gram top ten-

thousand words [31]. The rating will allow us to

determine the differences between a spoken-

language and programming-language. When a word

does not exist in the list of 10,000 words, a broader,

more encompassing list of 475,000 english words is

queried. If the word is not included in the larger list,

it is defined as misspelled (obscure).

Figure 1. Data Analysis Pipeline

Following the pipeline, the result reports is presented,

which contains statistical conclusions. The structure

and details of the report are presented in a subsequent

section.

6 Data Analysis
Our data analysis tool was designed to scan a

software project repository and generate a result set

or report. Before we present our results, we must first

define a series of entities, sets, and functions that are

crucial to the proper understanding of the results.

6.1 Entities

• Identifier: any raw variable, function, method,

class, parameter, or property name found in a

software repository. In other words, any word that is

not a predefined keyword for the syntax that

language.

• Lemma: defined above as, "reduced inflectional

forms and sometimes derivationally related forms of

a word to a common base form".

6.2 Sets

• Identifiers: a multi-set or bag of all the identifier

derived from the scanned project. The multi-set is

denoted by the letter I.

• Lemmas: a multi-set or bag of all lemmas

derived from the scanned project. The multi-set is

denoted by the letter L. In order to compute certain

calculations, we need to transform the multi-set L

into a set with unique elements. This unique set is

denoted by L'.

• English dictionary: a set of all word found in

the english language, in all tenses and pluralizations.

The set is denoted by the letter E.

• Common English dictionary: a set of the

10,000 most popular words in the english language.

The set is denoted by E'. It is important to note that

E' ⊆ E.

Functions

• Frequency: the total amount of times a lemma

was found in any identifier name. The count does not

have to refer to a unique instance of the lemma.

Meaning, if an identifier was used more than once, all

of its lemmas' counts will be incremented. The

function is neither surjectived or injective and is

denoted by (where N is the set of natural numbers):

• Rank: defines the how common a lemma is

based on its frequency in the project. The most

common lemma will receive a rank of 1 followed by

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 27 Volume 9, 2021

the second most common with a rank of 2 and so on;

the higher the frequency the lower the rank. If more

than one lemma has an equal frequency, then the

lemmas will be provided sequential rank based on

alphabetic order. The function is both surjectived or

injective and is denoted by:

• English rank: similar to the previous function,

however the rank is based on a predefined list provide

by Google and is based on how common a word is in

the english language. The function is denoted by:

• Distance: the difference between the rank of a

lemma in the english language versus its rank in the

scope of a software project. This function is very

important because it expresses the contrast between

NLP used in the english language and a similar model

(that has yet to be defined) for the software language.

For example, the word "the" is considered the most

popular english word (i.e. eng(the) = 1) however, the

word "the" is almost never found as an identifier

name in software projects (i.e. rank(the) = ∞). The

function is denoted by:

We initially defined rank(l) - eng(l) within an

absolute value expression, eliminating the distinction

that can be made by sign (negative or positive) of the

function's result values. The following example will

assist us in discerning between four alternative

results:
1. Infinity — dist(l) = ∞: occurs when a term does

not exist within the list of popular english words.

Such a circumstance usually points to an identifier

name that is unique to the code-base for business

logic purposes. For example, the word "latency" does

not exist in the list of popular english words, however

can easily be found in a software program.

2. Zero — dist(l) = 0: occurs when the popularity of

lemma in the english language is equal to the

popularity within the code-base. This would imply

that the NLP model used to analyze the english

language could be directly applied as the software

analysis model.

3. Negative values — dist(l) < 0: occur when a

lemma is more popular within a code-base then the

english language. For example, the word "set" is very

popular (usually one of the top 10 most used identifier

terms) in software code, whereas eng(set) = 189.

4. Positive values — dist(l) > 0: occur when a lemma

is less popular within a code-base then the english

language. For example, the word "in" is very popular

in english, eng(in) = 6 and is also used in software

code, albeit less frequently.

• Degree: provides insight into the broad use of a

lemma and not just its frequency or rank. The degree

function counts the amount of unique identifiers that

contain a given lemma. This is needed in order to sift

through popular, yet not ideal identifier names. For

example, a commonly used function with a flawed

identifier name can be introduced into a software

repository. Its frequency will be very high, however

its degree will be very low because the flawed choice

of lemmas will not be found in other identifiers. The

function is neither surjectived or injective and is

denoted by:

An example for the relationship between a lemma

and the amount of identifiers that contain it can be

seen in the diagram below, where degree(file)=5

because five identifier contain the lemma file:

Figure 2. Identifier to Lemma Relationship

• Related: specifies which lemmas are used

together to compile an identified name.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 28 Volume 9, 2021

This function is very useful when referring to a

compound identifier (compiled of two or more

lemmas) as a spoken sentence. This can be illustrated

using an undirected graph: the nodes of the graph are

the lemmas found in a repository and the edges

between two nodes represent those nodes (or

lemmas) being used together in the same identifier.

The figure below displays a graph for the following

group of identifiers: setDomainResolutionProtocol,

setName, setDate, setUserName, userName,

userLogin,userPassword loginName, loginPassword

domainName, loadDomain, resolvePassword,

fileName, loadFile, and fileProtocol.

Figure 3. Lemma Relationship Graph

 Using the example undirected cyclic graph above,

the function related(user) = [password, set, login,

name]. This is useful when attempting to suggest a

lemma during development. Meaning, based on

previously related lemmas, we can recommend the

use of chained lemmas for the same identifier name.

Currently, emphasis has not been placed on the

direction of the vertices of the graph. For example,

assuming the developer has begun writing a new

identifier name and has only written user, we can now

accurately propose related lemmas to them to

complete their identifier name.

7 Conclusion
This research has discussed the measurement of code

quality using tools like linters and measurement

scales such as code-smells. The research's main focus

was on attempting to establish an additional method

of measuring, as well as improving, code quality.

With the abundance of readily available tools to

measure code quality (both open-source and

proprietary), none of them provide a means for

measuring the usefulness or apprehension of an

identifier name within a codebase. Our attempt to

create an identifier dictionary would both assist

developers in choosing preferred identifier names as

well as reveal code that already contains aimless

names.

In order to substantiating the mechanism that would

be used to analyze software repositories and establish

a measure of quality pertaining to identifier names.

We were able to develop a tool that is generic and

impartial to the programming-language that it is

analyzing. The tool was successful in recursively

scanning complete code repositories and extract the

identifier names used throughout. The tool we

developed was also able to correctly split the

identifier names in to their base "lemmas", turning a

compound identifier into an understood "spoken

sentence". Part of the process of understanding an

identifier name as a spoken sentence is accomplished

by means of an NLP engine. It became immediately

evident that the NLP model used by the engine was

insufficient for our goals. The spoken english

language is closely related to the terminology found

within software code but with expected modification.

Further research would demand alterations to the

underlying model used in the NLP engine.

As a third step in our research, we defined a logical

and mathematical scale that should be used to sort

through a batch of identifier names gathered from a

software repository. The "sets" and "functions"

defined were based on our preliminary tests of our

extraction tool. Each set and function have a specific

goal in both understanding and defining the

usefulness of an identifier name in a given scope.

Our research forms a solid base for the demand of an

identifier dictionary among developers, as well as the

benefit it would have to software quality. Likewise,

this research can be used as a stepping stone for

further research. The sets, functions, and scales we

defined can be used to define meta-like data used by

a learning NLP engine or any other form of artificial

intelligence engine. Such improvement could supply

real-time suggestions to developers and improve

software code while it is being coded. The level of

competence at which a programmer writes software

code does not directly reflect their personal views for

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 29 Volume 9, 2021

what identifier names are considered more

appropriate and at what times. The naming

suggestions are intended for software developers at

every level, novice and professional alike. This

newly proposed measuring scale is statically

executed and does not need to be directly

implemented as part of the development workflow, it

can be run subsequently by during a CICD pipelines

or by other automated tooling. The proposed

identifier naming suggestions would evolve as part of

a developer’s workflow and become no different than

linters and styles guides already present in so many

projects.

A developer should be primarily focused on the task

they are attempting to solve and not sidelined with

responsibility of choosing an identifier name. With

our tool in place as both a development assistant as

well as a method for measuring quality after the fact,

developers be able to provide paramount attention to

architecture and functionally. This would

automatically promote quality, productivity, and

time-to-market all at the same time.

References:

[1] F. I. Dretske , "Laws of Nature," Philosophy

of Science, vol. 44, no. 2, pp. 248-268., 1977.

[2] A. Perreau-Saussine and J. B. Murphy , The

Nature Of Customary Law., Cambridge

University Press., 2007.

[3] A. Cockburn and J. Highsmith, "Agile software

development, the people factor.," Computer, vol.

34, no. 11, pp. 131-133., 2001.

[4] Y. Lurie and S. Mark, "Professional Ethics of

Software Engineers: An Ethical Framework.,"

Science and engineering ethics, vol. 22, no. 2, pp.

417-434., 2016.

[5] S. Mark and Y. Lurie, "Customized Project

Charter for Computational Scientific Software

Products.," Journal of Computational Methods in

Sciences and Engineering, vol. 18, no. 1, pp. 165-

176., 2018.

[6] H. Abdulhalim, Y. Lurie and S. Mark, Ethics as

a Quality Driver in Agile Software Projects.

Journal of Service Science and Management,

11(01), 13-25., 2018.

[7] P. Van Roy, "Programming paradigms for

dummies: What every programmer should know,"

New computational paradigms for computer

music, vol. 104, pp. 616-621., 2009.

[8] B. W. Kernighan and P. J. Plauger, The

Elements of Programming Style, 2nd ed.,

McGraw Hill., 1978.

[9] S. Boutnaru and A. Hershkovitz, "Software

quality and security in teachers’ and students’

codes when learning a new programming

language," Interdisciplinary Journal of e-Skills

and Life Long Learning, vol. 11, pp. 123-147.,

2015.

[10] A. Yamashita and L. Moonen, "To what extent

can maintenance problems be predicted by code

smell detection?–an empirical study.,"

Information and Software Technology, vol. 55,

no. 12, p. 2223–2242., 2013.

[11] M. Mäntylä, J. Vanhanen and C. Lassenius, "A

taxonomy and an initial empirical study of bad

smells in code.," in The 19th International

Conference on Software Maintenance (ICSM

2003), 2003.

[12] Merriam-Webster, Lint, Merriam-

Webster.com dictionary., 2020.

[13] S. C. Johnson and E. L. Michael, "UNIX time-

sharing system: Language development tools,"

The Bell System Technical Journal,, vol. 57, no.

6, pp. 2155-2175., 1978.

[14] S. C. Johnson, Lint, a C program checker., Bell

Telephone Laboratories., 1977.

[15] M. Beller, R. Bholanath, S. McIntosh and A.

Zaidman, "Analyzing the State of Static Analysis:

A Large-Scale Evaluation in Open Source

Software.," in The 23rd IEEE International

Conference on Software Analysis, Evolution, and

Reengineering, 2016.

[16] Z. Wang and J. Hahn, "The Effects of

Programming Style on Open Source

Collaboration.," in ICIS 2017 , 2017.

[17] GitHub, Google/styleguide., 2018.

[18] GitHub, Airbnb/javascript., 2018.

[19] M.-W. dictionary, Quality., 2020.

[20] Smartbear, Defining Code Quality.,

Smartbear.Com., 2015.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 30 Volume 9, 2021

[21] M. J. Juran and A. Blanton Godfrey, Quality

handbook, 5th ed., McGraw-Hill., 1999, pp. 173-

178.

[22] R. J. Williams and E. Dietrich, What Does

Code Quality Actually Mean? Dzone Agile.,

2017.

[23] A. Chagas, M. Santos and A. Vasconcelos,

"The impact of human factors on agile projects.,"

in Agile Conference (AGILE), 2015.

[24] H. R. Kang, H. D. Yang and C. Rowley,

"Factors in team effectiveness: Cognitive and

demographic similarities of software

development team members.," Human Relations,

vol. 59, no. 12, p. 1681–1710., 2006.

[25] H. Cunningham, "A definition and short history

of Language Engineering.," Natural Language

Engineering, vol. 5, no. 1, pp. 1-16., 1999.

[26] J. W. Creswell, "Mapping the field of mixed

methods research.," Journal of of mixed methods

research, vol. 3, no. 2, pp. 95-108., 2009.

[27] G. Gousios, M. A. Storey and A. Bacchelli,

"Work Practices and Challenges in Pull-Based

Development: The Contributor’s Perspective.," in

2016 IEEE/ACM 38th IEEE International

Conference on Software Engineering Companion,

ICSE 2016, 2016.

[28] A. Giri, A. Ravikumar, S. Mote and R.

Bharadwaj, "Vritthi-a theoretical framework for

IT recruitment based on machine learning

techniques applied over Twitter, LinkedIn, SPOJ

and GitHub profiles.," in Data Mining and

Advanced Computing (SAPIENCE), 2016.

[29] H. Borges, M. T. Valente, A. Hora and J.

Coelho, "On the popularity of GitHub

applications: A preliminary note.," 2015.

[30] T. Mikkonen and A. Taivalsaari, "Using

JavaScript as a real programming language

[Report].," Sun Microsystems., 2007.

[31] F. Perez, B. E. Granger and J. D. Hunter,

"Python: an ecosystem for scientific computing.,"

Computing in Science & Engineering, vol. 13, no.

2, pp. 13-21., 2010.

 [32] C. D. Manning, P. Raghavan and H. Schütze,

"Stemming and lemmatization. Introduction to

information retrieval," 2008.

[33] I. Google, "Google Ngram Viewer," 2019.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 31 Volume 9, 2021

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.4

Dov Benyomin Sohacheski,
Yotam Lurie, Shlomo Mark

E-ISSN: 2415-1521 32 Volume 9, 2021

https://creativecommons.org/licenses/by/4.0/deed.en_US

