欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1839-1846.doi: 10.3724/SP.J.1006.2012.01839

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米热激蛋白基因ZmHSP90-1的克隆及表达分析

刘玲玲1,2,柳思思2,4,翁建峰2,王昌涛3,李新海2,张世煌2,石庆华4,王丽娟1,*,郝转芳2,*   

  1. 王丽娟, E-mail: lj-wang@163.com; 郝转芳, E-mail: haozhuanfang@yahoo.com.cn
  • 收稿日期:2012-03-12 修回日期:2012-04-20 出版日期:2012-10-12 网络出版日期:2012-07-03
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA100501)资助。

Cloning and Expression Analysis of Heat Shock Protein Gene ZmHSP90-1 in Maize

LIU Ling-Ling1,2,LIU Si-Si2,4,WENG Jian-Feng2,WANG Chang-Tao3,LI Xin-Hai2,ZHANG Shi-Huang2,SHI Qing-Hua4,WANG Li-Juan1,*,HAO Zhuan-Fang2,*   

  1. 王丽娟, E-mail: lj-wang@163.com; 郝转芳, E-mail: haozhuanfang@yahoo.com.cn
  • Received:2012-03-12 Revised:2012-04-20 Published:2012-10-12 Published online:2012-07-03

摘要:

HSP90是普遍存在于原核和真核细胞中的一种高度保守的分子伴侣。本研究从玉米中克隆了一个HSP90同源基因, 命名为ZmHSP90-1基因, 并对其进行了初步的序列分析。该基因cDNA序列全长2 371 bp, 开放阅读框2 094 bp, 编码697个氨基酸, 蛋白质分子量约79.98 kD。蛋白结构预测及同源比对分析表明, ZmHSP90-1基因编码蛋白含ATPase位点和HSP90保守结构域, 并与拟南芥、水稻等多种物种的热激蛋白高度同源; 进化树分析表明ZmHSP90-1与拟南芥AtHSP90.1基因关系较近, 蛋白序列相似性达88.3%。目的蛋白亚细胞定位显示, ZmHSP90-1蛋白在细胞质中表达。实时荧光定量PCR分析表明, ZmHSP90-1对非生物胁迫高温、高盐、ABA、低温、干旱均具有明显的应答反应。推测ZmHSP90-1是玉米的一个胁迫相关基因。

关键词: 玉米, 热激蛋白, 非生物胁迫, ZmHSP90-1

Abstract:

The heat shock protein 90 (HSP90) is a widespread family of molecular chaperones found in prokaryotes and all eukaryotes, with high conservation among plant species. In this study, a HSP90 gene was isolated from maize, named ZmHSP90-1. The full cDNA sequence of ZmHSP90-1 is 2 371 bp, containing a 2 094 bp open reading frame (ORF) and encoding 697 amino acids with a predicted molecular mass of 79.98 kD. The ZmHSP90-1 protein contains a predicted ATPase site and a HSP90 conservative structure domain, which is highly conserved in plants and especially similar to AtHSP90.1. Instantaneous expression analysis showed that ZmHSP90-1 proteins was localized in cytoplasm. The expression of ZmHSP90-1 in maize analyzed by quantitative real-time PCR was induced by hot, high-salt, ABA, cold and drought treatments. These results suggested that ZmHSP90-1 might be a stress related gene of maize.

Key words: Maize (Zea mays L.), Heat shock protein, Abiotic stresses, ZmHSP90-1

[1]Kimura Y, Matsumoto S, Yahara I. Temperature-sensitive mutants of HSP82 of the budding yeast Saccharomyces cerevisiae. Mol Gen Genet, 1994, 242: 517-527



[2]Young J C, Moarefi I, Hartl F U. HSP90: a specialized but essential protein-folding tool. J Cell Biol, 2001, 154: 267-273



[3]Caplan A J, Jackson S, Smith D. HSP90 reaches new heights. EMBO Rep, 2003, 4: 126-130



[4]Stebbins C E, Russo A A, Schneider C, Rosen N, Hartl F U, Pavletich N P. Crystal structure of an HSP90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997, 89: 239-250



[5]Prodromou C, Panaretou B, Chohan S, Siligardi G, O B R, Ladbury J E, Roe S M, Piper P W, Pearl L H. The ATPase cycle of HSP90 drives a molecular'clamp'via transient dimerization of the N-terminal domains. EMBO J, 2000, 19: 4383-4392



[6]Song H-M(宋红苗), Chen X-Y(陈显扬), Li Y-X(李银心). Structure and function of heat shock protein 90 in plants. Plant Physiol Commun (植物生理学通讯), 2007, 43(6): 1002-1008 (in Chinese with English abstract)



[7]Rutherford S L, Lindquist S. HSP90 as a capacitor for morphological evolution. Nature, 1998, 396: 336-342



[8]Queitsch C, Sangster T A, Lindquist S. HSP90 as a capacitor of phenotypic variation. Nature, 2002, 417: 618-624



[9]Taipale M, Jarosz D F, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol, 2010, 11: 515-528



[10]Wang G F, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (HSP90): functional involvement of cytosolic HSP90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191: 418-431



[11]Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005, 138: 2165-2173



[12]Hein I, Barciszewska-pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby I E, Sundar S, Jarmolowski A, Shirasu K, Lacomme C. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol, 2005, 138: 2155-2164



[13]Song H, Fan P, Li Y. Overexpression of organellar and cytosolic AtHSP90 in Arabidopsis thaliana impairs plant tolerance to oxidative stress. Plant Mol Biol Rep, 2009, 27: 342-349



[14]Krishna P, Sacco M, Cherutti J F, Hill S. Cold-induced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol, 1995, 107: 915-923



[15]Pareek A, Singla S L, Grover A. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol, 1995, 29: 293-301



[16]Milioni D, Hatzopoulos P. Genomic organization of HSP90 gene family in Arabidopsis. Plant Mol Biol, 1997, 35: 955-961



[17]Krishna P, Gloor G. The HSP90 family of proteins in Arabidopsis thaliana. Cell Stress & Chaperones, 2001, 6: 238-246



[18]Song H, Zhao R, Fan P, Wang X, Chen X, Li Y. Overexpression of AtHSP90.2, AtHSP90.5 and AtHSP90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 2009, 229: 955-964



[19]Song H, Fan P, Shi W, Zhao R, Li Y. Expression of five AtHSP90 genes in Saccharomyces cerevisiae reveals functional differences of AtHSP90s under abiotic stresses. J Plant Physiol, 2010, 167: 1172-1178



[20]Liu D, Zhang X, Cheng Y, Takano T, Liu S. rHSP90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem, 2006, 44: 380-386



[21]Reddy P S, Thirulogachandar V, Vaishnavi C S, Aakrati A, Sopory S K, Reddy M K. Molecular characterization and expression of a gene encoding cytosolic HSP90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene, 2011, 474: 29-38



[22]Xu X, Song H, Zhou Z, Shi N, Ying Q, Wang H. Functional characterization of AtHSP90. 3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress. Biotechnol Lett, 2010, 32: 979-987



[23]Wu B(武斌), Li X-H(李新海), Xiao M-J(肖木辑), Xie C-X(谢传晓), Hao Z-F(郝转芳), Li M-S(李明顺), Zhang S-H(张世煌). Genetic variation in fifty-three maize inbred lines in relation to drought tolerance at seedling stage. Sci Agric Sin (中国农业科学), 2007, 40(4): 665-676 (in Chinese with English abstract)



[24]Hao Z F, Li X H, Su Z J, Xie C X, Li M S, Liang X L, Weng J F, Zhang D G, Li L, Zhang S H. A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci, 2011, 61: 101-108



[25]Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152: 1373-1390



[26]Pearl L, Prodromou C, Workman P. The HSP90 molecular chaperone: an open and shut case for treatment. Biochem J, 2008, 410: 439-453



[27]Chen S, Sullivan W P, Toft D O, Smith D F. Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with HSP90 mutants. Cell Stress & Chaperones, 1998, 3: 118-129



[28]Prodromou C, Roe S M, O B R, Ladbury J E, Piper P W, Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the HSP90 molecular chaperone. Cell, 1997, 90: 65-75



[29]Haralampidis K, Milioni D, Rigas S, Hatzopoulos P. Combinatorial interaction of Cis elements specifies the expression of the Arabidopsis AtHSP90-1 gene. Plant Physiol, 2002, 129: 1138-1149



[30]Sangster T A, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol, 2005, 8: 86-92



[31]Sun X-L(孙秀玲), Sun T-H(孙同虎), Bo P-F(薄鹏飞), Zhang W-J(张维静), Du X-H(杜希华). Heat shock protein 90 in development and disease resistance of plants. Chin Bull Life Sci (生命科学), 2008, 20(1): 142-146 (in Chinese with English abstract)



[32]Cao D, Froehlich J E, Zhang H, Cheng C L. The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J, 2003, 33: 107-118



[33]Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J, 2002, 21: 898-908



[34]Yabe N, Takahashi T, Komeda Y. Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol, 1994, 35: 1207-1219



[35]Krishna P, Sacco M, Cherutti J F, Hill S. Cold-induced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol, 1995, 107: 915-923



[36]Nover L. Expression of heat shock genes in homologous and heterologous systems. Enzyme Microbial Technol, 1987, 9: 130-144



[37]Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-verner E, Gurley W B. The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress & Chaperones, 1996, 1: 215-223



[38]Hawle P, Horst D, Bebelman J P, Yang X X, Siderius M, der Van V. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). Eukaryotic Cell, 2007, 6: 521-532



[39]Truman A W, Millson S H, Nuttall J M, King V, Mollapour M, Prodromou C, Pearl L H, Piper P W. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the HSP90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase. Eukaryotic Cell, 2006, 5: 1914-1924



[40]Millson S H, Truman A W, King V, Prodromou C, Pearl L H, Piper P W. A two-hybrid screen of the yeast proteome for HSP90 interactors uncovers a novel HSP90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryotic Cell, 2005, 4: 849-860

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!