Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 17-25    DOI: 10.3724/SP.J.1037.2012.00479
  论文 本期目录 | 过刊浏览 |
NiTi合金中马氏体相变失稳与局部化的原位多场研究
杜泓飞1,曾攀1, 2,赵加清3,雷丽萍1, 2,方刚1, 2,瞿体明1, 2
1.清华大学机械工程系, 北京 100084
2.清华大学先进成形制造教育部重点实验室, 北京 100084
3.清华大学核能与新能源技术研究院, 北京 100084
IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS
DU Hongfei 1, ZENG Pan1, 2, ZHAO Jiaqing3,LEI Liping1, 2, FANG Gang1, 2, QU Timing1, 2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Material Processing Technology, Ministry of Education, Tsinghua University, Beijing,100084
3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
引用本文:

杜泓飞,曾攀1,赵加清,雷丽萍,方刚,瞿体明. NiTi合金中马氏体相变失稳与局部化的原位多场研究[J]. 金属学报, 2013, 49(1): 17-25.
DU Hongfei, ZENG Pan, ZHAO Jiaqing, LEI Liping, FANG Gang, QU Timing. IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS[J]. Acta Metall Sin, 2013, 49(1): 17-25.

全文: PDF(1570 KB)  
摘要: 

采用数字图像相关(DIC)方法原位测定了NiTi形状记忆合金薄带在单轴拉伸下变形时的应变场,采用红外热成像法(IR)原位测定其温度 场, 并定量获得了单轴拉伸加载-卸载条件下马氏体带局部化的全场应变与温度信息. 同时研究了相变带的形核、扩展、合并、缩减、 分裂及消失等过程中相变带内和带外应变场、温度场、厚度场及折曲角场的变化规律. 结果表明, 相变应变主要集中在相变带内部, 而带外应变量很小, 温度场和厚度场变化主要集中在相界面移动的前端,折曲角场变化集中在相变前端且带内分布不均匀.

关键词 形状记忆合金马氏体相变材料失稳数字图像相关(DIC)    
Abstract

When NiTi shape memory alloys thin strips under the uniaxial tensile deformation, the stress-induced martensitic transformation tends to exhibit strain localization and instability, and the sample shows reversible transformation bands evolution on macroscopic. The displacement, strain and temperature fields were investigated with in situ optical method, and the full-field strain and temperature information about martensitic localization were quantitatively obtained during uniaxial loading—unloading conditions. Strain field is calculated by digital image correlation (DIC) method, and the temperature field is captured by infrared thermograph, the thickness field and in-plane rotation angle are also calculated by DIC data.The strain, temperature variation, thickness, in-plane rotation both inside and outside of the transformation bands were studied when it nucleation, expansion, combination, reduction and disappear. The results show that transformation strain of the samples are mainly concentrated inside the transformation bands but small outside, and temperature variation mainly concentrated in the transformation fronts, the thickness field in transformation bands is 2% smaller than out of bands. In-plane rotation angle is not only concentrated in the transformation fronts, but also heterogeneous in the transformation bands. In addition, the maximum in-plane rotation angle during tension is 1.5 °. The whole loading-unloading progress is full thermal coupling, transformation localization, martensite and austenitic critical nucleation stress are greatly influenced by temperature variation.

Key wordsshape memory alloy    martensitic transformation    material instability    digital image correlation
    
基金资助:

国家自然科学基金资助项目51275270

作者简介: 杜泓飞, 男, 1986年生, 博士生

 


[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and

Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 5

(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京: 国防工业出版社, 2002: 5)

[2] Otsuka K, Wayman C M, translated by Zhang C C, Su

J C. Shape Memory Materials. Shanghai: Second Military Medical University Press, 2003: 30

(Otsuka K, Wayman C M著, 张春才, 苏佳灿译. 形状记忆材料. 上海: 第二军医大学出版社, 2003: 30)

[3] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 20

[4] Shaw J A, Kyriakides S. Acta Mater, 1997; 45: 683

[5] Li Z Q, Sun Q P. Int J Plast, 2002; 18: 1481

[6] Sittner P, Liu Y, Novak V. J Mech Phys Solids, 2005; 53: 1719

[7] Brinson L C, Schmidt I, Lammering R. J Mech Phys Solids, 2004; 52: 1549

[8] Daly S, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 3593

[9] Daly S, Miller A, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 6322

[10] Favier D, Louche H, Schlosser P, Orgeas L, Vacher P, Debove L. Acta Mater, 2007; 55: 5310

[11] Zhang X H, Feng P, He Y J, Yu T X, Sun Q P. Int J Mech Sci, 2010; 52: 1660

[12] Kim K, Daly S. Exp Mech, 2011; 51: 641

[13] Sutton M A, Orteu J J, Schreier H W. Image Correlation For Shape Motion And Deformation Measurements.New York: Springer, 2009: 36

[14] Zhao J Q, Zeng P, Lei L P, Ma Y. Opt Laser Eng, 2012; 50: 473

[15] Zhao J Q, Zeng P, Lei L P, Du H F, He W B, Liu Y, Xu Y J. Opt Laser Eng, 2012; 50: 1662

[16] Zhao J Q. PhD Thesis, Tsinghua University, 2012

(赵加清. 清华大学博士论文, 北京, 2012)

[17] Reedlunn B, Daly S, Hector L, Zavattieri P, Shaw J. Exp Tech, 2011; 35: 1

[18] Chu T C, Ranson W F, Sutton M A. Exp Mech, 1985; 25: 232

[19] Sutton M A, McNeill S R, Helm J D. Photo-Mechanics, 2000; 77: 323

[20] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2010; 34: 63

[21] Shaw J A, Kyriakides S. Int J Plast, 1998; 13: 837

[22] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2009; 33: 51

[23] Feng P, Sun Q P. J Mech Phys Solids, 2006; 54: 1568

[24] Feng P, Sun Q P. Smart Mater Struct, 2007; 16: S179

[25] Zhang Y T, Qi D X. The Theory on Strain Localization and its Applications.

Tianjin: Tianjin University Press, 2010: 43

(张义同, 齐德. 应变局部化理论及应用. 天津: 天津大学出版社, 2010: 43)

[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[3] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[4] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[8] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[12] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[13] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[14] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[15] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.