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Some Fixed Point Results in Spaces with Perturbed Metrics
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ABSTRACT. In this paper, the concept of perturbed metric was introduced within the metric spaces and
some fixed point results were established for self-mappings satisfying such contractive conditions, using Picard
operators technique and generalized contractions. Moreover, some applications of the main result to continuous
data dependence of the fixed points of Picard operators defined on these spaces were presented. Also, the main
result of this paper was applied to study the existence and uniqueness of the solution for an integral equation
which models an epidemiological problem.

1. INTRODUCTION

As many of the non-linear phenomena are mathematically modeled by various types
of equations, an important aspect resides in the study of the existence, uniqueness and
computation of the solutions of these problems. Numerous mathematical methods have
been developed to study the problems raised by science and engineering, one of the most
powerful being the Picard and weakly Picard operators technique. In 1993, Rus [9] intro-
duced the concept of weakly Picard operator. More recently, Mureşan [5], Mureşan and
Mureşan [6] applied Picard and weakly Picard operators method to study some abstract
integro-differential equations. Using suitable Picard operators, Caliò et al. [2] established
some results for Volterra-Fredholm integral equations and Rus [10] investigated some
functional-differential equations of mixed type. Also, through Picard and weakly Picard
operators theory, Wang et al. [12] studied some nonlocal Cauchy problems for differential
equations in Banach spaces. In this paper, by using the Picard operators technique and
generalized contractions we study the existence, uniqueness and continuous data depen-
dence of fixed points for operators defined on spaces with perturbed metrics.

Throughout this paper we shall follow the standard terminologies and notations in
nonlinear analysis. For the convenience of the reader we shall recall some of them.

Let X be a nonempty set and T : X → X an operator. We denote by

T 0 := 1X , T
1 := T, Tm+1 = Tm ◦ T, m ∈ N,

the iterate operators of the operator T , and

FT := {x ∈ X | T (x) = x}
the set of the fixed points of T .

Definition 1.1. ([12]) Let (X, d) be a metric space. An operator T : X → X is a Picard
operator if there exists x∗ ∈ X such that FT = {x∗} and the sequence Tm(x0) → x∗ as
m→ ∞, for any arbitrary point x0 ∈ X .
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Definition 1.2. ([9]) Let (X, d) be a metric space. An operator T : X → X is a weakly
Picard operator if the sequence Tm(x0) converges as m → ∞, for any arbitrary point
x0 ∈ X , and its limit (which may depend on x0) is a fixed point of T .

If T is a weakly Picard operator, then we consider the operator

T∞ : X → X, T∞(x) = lim
m→∞

Tm(x).

Further, we denote by R+ the real interval [0,∞).
An important notion for our approach is the comparison function.

Definition 1.3. ([11]) A function φ : R+ → R+ is a comparison function if the following
conditions are satisfied:

(i) φ is monotonically increasing;
(ii) the sequence φm(t) → 0 as m→ ∞, for every t > 0.

Example 1.1. The maps φ : R+ → R+, φ(t) = ln(t + 1), φ(t) = t
t+1 and φ(t) = rt, where

r ∈ (0, 1), are comparison functions.

A very fecund idea, which led to numerous results in mathematics, is the concept of
φ-contraction, which generalizes the notion of contraction. We recall the definition of a
φ-contraction.

Definition 1.4. ([11]) Let (X, d) be a metric space. An operator T : X → X is a φ-
contraction if φ is a comparison function and the following condition is satisfied:

d(T (x), T (y)) ≤ φ(d(x, y)), (∀)x, y ∈ X.

A generalization of the contraction principle (the Picard-Banach theorem) was estab-
lished by J. Matkowski for φ-contractions in complete metric spaces.

Theorem 1.1. ([4]) Let (X, d) be a complete metric space and T : X → X a φ-contraction. Then
T is a Picard operator.

Next we recall the definitions of the right-continuous, upper semicontinuous and right
upper semicontinuous functions.

Definition 1.5. ([8]) Let A be a subset of R, a ∈ A a point and f : A → R a function. We
say that:

1) f is right-continuous at a if for every ε > 0 there exists δ(ε) > 0 such that

f(a)− ε < f(x) < f(a) + ε for all x ∈ (a, a+ δ(ε)) ∩A;
2) f is right-continuous if it is right-continuous at every point a ∈ A.

2. RESULTS

Lemma 2.1. Any comparison function φ : R+ → R+ has the following properties:
(i) φ(t) < t for all t > 0;

(ii) φm(0) → 0 as m→ ∞ if and only if φ(0) = 0;
(iii) if φ(0) = 0 then φ is right-continuous at the point 0.

Proof. (i) We assume there exists t > 0 such that φ(t) ≥ t. As φ is monotonically in-
creasing, it follows that φ(φ(t)) ≥ φ(t) ≥ t, therefore φ2(t) ≥ t. Applying the induction
method we deduce φm(t) ≥ t for all m ∈ N∗. Passing to the limit as m → ∞, in the
previous inequality, we find lim

m→∞
φm(t) ≥ t > 0, which is in contradiction with the fact

that the sequence φm(t) → 0 as m→ ∞, for every t > 0. Hence, φ(t) < t for all t > 0.
(ii) ⇒ Suppose that φm(0) → 0 as m → ∞. We assume that φ(0) > 0. Since φ is

monotonically increasing, we get φ(φ(0)) ≥ φ(0), i.e. φ2(0) ≥ φ(0). Using the induction
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method we obtain φm(0) ≥ φ(0) for all m ∈ N∗. Consequently, lim
m→∞

φm(0) ≥ φ(0) > 0,

which is in contradiction with the fact that φm(0) → 0 as p→ ∞. Therefore, φ(0) = 0.
⇐ Assume that φ(0) = 0. We get φ(φ(0)) = φ(0) = 0, i.e. φ2(0) = 0. Using the

induction method we obtain φm(0) = 0 for all m ∈ N∗. Consequently, φm(0) → 0 as
m→ ∞.

(iii) Since φ : R+ → R+ and using (i), we deduce 0 ≤ φ(t) < t for all t > 0. Passing to
the limit as t ↘ 0, we find 0 ≤ lim

t↘0
φ(t) ≤ 0, therefore lim

t↘0
φ(t) = 0. Taking into account

that φ(0) = 0, it follows that lim
t↘0

φ(t) = φ(0), hence φ is right-continuous at the point

0. □

Lemma 2.2. Let φ : R+ → R+ be a function that satisfies the condition (i) from Definition 1.3
and which is right-continuous. Then, the condition (ii) from Definition 1.3 is equivalent with:

(ii′) φ(t) < t for all t > 0.

Proof. ⇒ Suppose that φ verifies the condition (ii) from Definition 1.3. As φ satisfies the
condition (i) of Definition 1.3, it follows that φ is a comparison function. Apllying Lemma
2.1 (i) we deduce that φ(t) < t for all t > 0, i.e. the condition (ii′) is fulfilled.

⇐ Assume that φ satisfies the condition (ii′). Let t > 0 be an arbitrary number. As
φ is monotonically increasing, it follows that φ(φ(t)) ≤ φ(t), therefore φ2(t) ≤ φ(t).
Applying the induction method we deduce φm+1(t) ≤ φm(t) for all m ∈ N∗. On the
other hand, φ : R+ → R+, hence 0 ≤ φ(t). Since φ is monotonically increasing, we get
0 ≤ φ(0) ≤ φ(φ(t)), i.e. 0 ≤ φ2(t). Applying the induction method we find 0 ≤ φm+1(t)
for all m ∈ N. Consequently, we proved that 0 ≤ φm+1(t) ≤ φm(t) for all m ∈ N∗.
Therefore, (φm(t))m∈N∗ is a sequence of positive real numbers, monotonically decreasing
and bounded from below by 0. We deduce that the sequence (φm(t))m∈N∗ converges to a
unique limit a(t) ≥ 0 and φm(t) ≥ a(t) for all m ∈ N∗. Let suppose that a(t) > 0. Since φ
satisfies the condition (ii′) it follows that φ(a(t)) < a(t). We have

a(t) = lim
m→∞

φm(t) = lim
m→∞

φm+1(t) = lim
m→∞

φ(φm(t)).

As the function φ is right-continuous we obtain

lim
m→∞

φ(φm(t)) = lim
x↘a(t)

φ(x) = φ(a(t)).

Consequently, a(t) = φ(a(t)), which is in contradiction with the fact that φ(a(t)) < a(t).
Therefore, a(t) = 0. As the number t > 0 was chosen arbitrarily, we find that the sequence
φm(t) → 0 as m → ∞, for every t > 0, i.e. the condition (ii) from Definition 1.3 is
verified. □

Definition 2.6. Let Ψ be the class of all the functions ψ : R+ → R+ that satisfy the follow-
ing conditions:

(i) ψ is continuous;
(ii) ψ is monotonically increasing;

(iii) ψ(t) = 0 if and only if t = 0.

Let (X, d) be a metric space. If we modify the metric d by a function ψ ∈ Ψ we remark
that, in most cases, the application ψ ◦ d does not keep the metric properties.

Example 2.2. Let us consider (X, d) a metric space and the function ψ : R+ → R+, ψ(t) =
t2. Then:

1) ψ belongs to the class Ψ;
2) ψ ◦ d is not a metric on X .
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Lemma 2.3. Let us consider a function φ : R+ → R+ satisfying the conditions:
1) φ is right-continuous;
2) φ(t) < t for all t > 0.

Then:
lim
s↘t

(s− φ(s)) > 0 for every t > 0.

Proof. Considering the properties of the limit from the right of a function and the hypothe-
ses 1), 2), we deduce

lim
s↘t

(s− φ(s)) = t− φ(t) > 0 for every t > 0.

□

Lemma 2.4. Let us consider a function φ : R+ → R+ satisfying the conditions:
1) φ is monotonically increasing;
2) φ is right-continuous;
3) φ(t) < t for all t > 0;

and a function ψ ∈ Ψ. We define the function ϕ : R+ → R+,

(2.1) ϕ(t) = sup{s ∈ R+ | ψ(s) ≤ φ(ψ(t))}.
Then the following statements are true:

(i) φ(0) = 0;
(ii) ϕ is well defined;

(iii) ϕ(0) = 0;
(iv) ϕ(t) ≤ t for all t ∈ R+;
(v) ψ(ϕ(t)) ≤ φ(ψ(t)) for all t ∈ R+;

(vi) ϕ(t) < t for all t > 0;
(vii) ϕ is monotonically increasing;

(viii) the sequence ϕm(t) → 0 as m→ ∞, for every t > 0;
(ix) ϕ is a comparison function.

Proof. (i) Since the function φ is right-continuous at the point 0, we have lim
t↘0

φ(t) = φ(0).

On the other hand, φ : R+ → R+ and considering the hypothesis 3) we deduce 0 ≤ φ(t) <
t for all t > 0. Passing to the limit as t↘ 0, we obtain 0 ≤ lim

t↘0
φ(t) ≤ 0, hence lim

t↘0
φ(t) = 0.

It follows that φ(0) = 0.
(ii) Let t ∈ R+ be an arbitrary number. We define the set

(2.2) Mt := {s ∈ R+ | ψ(s) ≤ φ(ψ(t))}.
As ψ(0) = 0 (according to Definition 2.6 (iii)) and φ(ψ(t)) ≥ 0 (φ,ψ : R+ → R+), we obtain
ψ(0) ≤ φ(ψ(t)), hence 0 ∈ Mt, thus Mt is a non-empty set. We distinguish the following
cases:

1. If t = 0. As ψ(0) = 0 (according to Definition 2.6 (iii)) and φ(0) = 0 (by (i)) we find
φ(ψ(0)) = 0, hence M0 = {s ∈ R+ | ψ(s) ≤ 0}. Considering Definition 2.6 (iii), we
get M0 = {0}. It follows that ϕ(0) = supM0 = sup{0} = 0.

2. If t > 0. Choose s ∈ Mt be an arbitrary element. We deduce s ∈ R+ and ψ(s) ≤
φ(ψ(t)). On the other hand, as t > 0, according to Definition 2.6 (iii), we have
ψ(t) > 0. Using the hypothesis 3) we find φ(ψ(t)) < ψ(t). It follows that ψ(s) <
ψ(t). Considering that ψ is monotonically increasing (by Definition 2.6 (ii)), we
get s < t. Therefore, s ∈ [0, t). Since s ∈ Mt was choosen arbitrarily, we obtain
Mt ⊆ [0, t). Consequently, the setMt is bounded from above by t. We deduce that,
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there exists supMt ≤ t. Hence, ϕ(t) := supMt ≤ t is well defined and we have
ϕ(t) ≤ t.

(iii), (iv) results from (ii).
(v) Let t ∈ R+ be an arbitrary element. According to (ii), the set Mt is bounded from

above by t and ϕ(t) := supMt. It follows that, there exists a sequence (sn)n∈N ⊆ Mt such
that sn → ϕ(t) as n → ∞ and sn ≤ ϕ(t) for all n ∈ N. Since sn ∈ Mt for all n ∈ N, we
deduce

ψ(sn) ≤ φ(ψ(t)) for all n ∈ N.
On the other hand, as ψ is continuous (by Definition 2.6 (i)), we obtain ψ(sn) → ψ(ϕ(t))
as n→ ∞. Therefore, from the previous inequality we find ψ(ϕ(t)) ≤ φ(ψ(t)).

In other words, ϕ(t) ∈ Mt and Mt ⊆ [0, ϕ(t)]. Choose s ∈ [0, ϕ(t)]. We get s ≤ ϕ(t) and
considering that ψ is monotonically increasing (according to Definition 2.6 (ii)), it results
ψ(s) ≤ ψ(ϕ(t)). Therefore, ψ(s) ≤ φ(ψ(t)), i.e. s ∈Mt. Consequently, Mt = [0, ϕ(t)].

(vi) From (iv) we have ϕ(t) ≤ t for all t ∈ R+. Suppose that there exists t > 0 such that
ϕ(t) = t. By using (v) we deduce ψ(t) ≤ φ(ψ(t)). On the other hand, t > 0 implies ψ(t) > 0
(according to Definition 2.6 (iii)) and using the hypothesis 3) we obtain φ(ψ(t)) < ψ(t). It
follows that, ψ(t) < ψ(t), which is a contradiction. Consequently, ϕ(t) < t for all t > 0.

(vii) Let t1, t2 ∈ R+, t1 < t2 be arbitrary numbers. Taking into consideration that φ,ψ
are monotonically increasing, we get φ(ψ(t1)) ≤ φ(ψ(t2)), hence

{s ∈ R+ | ψ(s) ≤ φ(ψ(t1))} ⊆ {s ∈ R+ | ψ(s) ≤ φ(ψ(t2))}.
It follows that

ϕ(t1) = sup{s ∈ R+ | ψ(s) ≤ φ(ψ(t1))} ≤ sup{s ∈ R+ | ψ(s) ≤ φ(ψ(t2))} = ϕ(t2),

thus ϕ is monotonically increasing.
(viii) Let t > 0 be an arbitrary number. We consider the sequence (tm)m∈N ⊂ R+

defined by

(2.3) t0 = t, tm = ϕ(tm−1),m ≥ 1.

Because t0 > 0, from (vi) we get ϕ(t0) < t0, hence t1 < t0. Applying the induction method
and considering that ϕ is monotonically increasing (by (vii)), we deduce tm ≤ tm−1 for
all m ≥ 1. It follows that hence (tm)m∈N is a monotonically decreasing sequence and
bounded from below by 0. We deduce that the sequence (tm)m∈N converges to a limit
l ≥ 0 and tm ≥ l for all m ∈ N. Next, we show that l = 0. Let us suppose that l > 0.
Applying (v) we find

ψ(ϕ(tk−1)) ≤ φ(ψ(tk−1)) for all k ≥ 1,

hence
ψ(tk) ≤ φ(ψ(tk−1)) for all k ≥ 1,

so

(2.4) ψ(tk)− ψ(tk−1) ≤ φ(ψ(tk−1))− ψ(tk−1) for all k ≥ 1.

Taking into account the inequality (2.4), we obtain

ψ(tm) = ψ(t0) +

m∑
k=1

(ψ(tk)− ψ(tk−1)) ≤ ψ(t0) +

m∑
k=1

(φ(ψ(tk−1))− ψ(tk−1))

(2.5) = ψ(t0)−
m∑

k=1

(ψ(tk−1)− φ(ψ(tk−1))) for allm ≥ 1.

On the other hand, (tm)m∈N is a monotonically decreasing sequence which converges to
l > 0 and ψ is continuous, monotonically increasing and ψ(t) = 0 if and only if t = 0
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(by Definition 2.6). Therefore, (ψ(tm))m∈N is a monotonically decreasing sequence which
converges to ψ(l) > 0. Since φ satisfies the hypotheses of Lemma 2.3, and using the
properties of the limit, we find

lim
k→∞

(ψ(tk−1)− φ(ψ(tk−1))) > 0.

It follows that

(2.6)
∞∑
k=1

(ψ(tk−1)− φ(ψ(tk−1))) = ∞.

From the relation (2.5), (2.6) we get ψ(tm) → ∞ as m→ ∞, which is in contradiction with
ψ : R+ → R+. Therefore, l = 0, i.e. tm → 0 as m → ∞. Also, from the relation (2.3), we
deduce tm = ϕm(t) for all m ∈ N. Consequently, ϕm(t) → 0 as m→ ∞.

(ix) Follows from (vii), (viii), according to Definition 1.3. □

Our purpose is to investigate the existence and uniqueness of fixed points for operators
defined on spaces endowed with such perturbed metrics. Next we establish a fixed point
result on spaces with modified metrics.

Theorem 2.2. Let us consider a function φ : R+ → R+ satisfying the conditions:
1) φ is monotonically increasing;
2) φ is right-continuous;
3) φ(t) < t for all t > 0;

and a function ψ ∈ Ψ. If (X, d) is a complete metric space and T : X → X an operator such that:

(2.7) ψ(d(T (x), T (y))) ≤ φ(ψ(d(x, y))), (∀)x, y ∈ X,

then the following statements are true:
(i) T is a ϕ-contraction, where the function ϕ : R+ → R+ is defined by the relation (2.1);

(ii) T is a Picard operator.

Proof. (i) We remark that the functions φ,ψ fulfill the hypotheses of Lemma 2.4. It follows
that, we can consider the function ϕ : R+ → R+ defined by the relation (2.1), which is a
comparison function (according to Lemma 2.4 (ix)).

Let x, y ∈ X be arbitrary elements. Since the operator T : X → X satisfies the inequal-
ity (2.7), we obtain

d(T (x), T (y)) ∈ {s ∈ R+ | ψ(s) ≤ φ(ψ(d(x, y)))},

hence
d(T (x), T (y)) ≤ sup{s ∈ R+ | ψ(s) ≤ φ(ψ(d(x, y)))} = ϕ(d(x, y)).

Therefore, ϕ is a comparison function and the operator T : X → X verifies the inequal-
ity

(2.8) d(T (x), T (y)) ≤ ϕ(d(x, y)), (∀)x, y ∈ X,

which means that T : X → X is a ϕ-contraction (according to Definition 1.4).
(ii) As (X, d) is a complete metric space and T is a ϕ-contraction, applying Theorem 1.1

we deduce that T is a Picard operator. □

Further, the above result will be applied to continuous data dependence of the fixed
points of Picard operators defined on spaces with perturbed metrics.

Let ϕ : R+ → R+ a comparison function. If

(2.9) s− ϕ(s) → ∞ as s→ ∞,
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we can define the function

(2.10) θϕ : R+ → R+, θϕ(t) = sup{s ∈ R+ | s− ϕ(s) ≤ t}.
We remark that θϕ is monotonically increasing and θϕ(t) → 0 as t → 0. The function θϕ
appears when we study the data dependence of the fixed points.

Theorem 2.3. Let us consider a function φ : R+ → R+ satisfying the conditions:
1) φ is monotonically increasing;
2) φ is right-continuous;
3) φ(t) < t for all t > 0;

and a function ψ ∈ Ψ. Suppose that the function ϕ : R+ → R+ defined by the relation (2.1)
fulfills the hypothesis (2.9). If (X, d) is a complete metric space and T : X → X an operator such
that:

(2.11) ψ(d(T (x), T (y))) ≤ φ(ψ(d(x, y))), (∀)x, y ∈ X,

then the following statements are valid:
(i) T has a unique fixed point x∗ ∈ X ;

(ii) d(x, x∗) ≤ θϕ(d(x, T (x))), (∀)x ∈ X ;
(iii) if U : X → X is an operator verifying the conditions:

a) FU ̸= ∅,
b) there exists η > 0 such that d(U(x), T (x)) ≤ η, (∀)x ∈ X ,

then d(y∗, x∗) ≤ θϕ(η), (∀)y∗ ∈ FU .

Proof. We remark that the hypotheses of Theorem 2.2 are fulfilled.
(i) By using Theorem 2.2 (ii) we find that T is a Picard operator, thus T has a unique

fixed point x∗ ∈ X .
(ii) Applying Theorem 2.2 (i) we get that T is a ϕ-contraction, hence

d(T (x), T (y)) ≤ ϕ(d(x, y)), (∀)x, y ∈ X.

Let x ∈ X be an arbitrary element. Considering the properties of the metric d and the
previous inequality we obtain

d(x, x∗) ≤ d(x, T (x)) + d(T (x), x∗)

= d(x, T (x)) + d(T (x), T (x∗)) ≤ d(x, T (x)) + ϕ(d(x, x∗)),

hence
d(x, x∗)− ϕ(d(x, x∗)) ≤ d(x, T (x)),

thus
d(x, x∗) ∈ {s ∈ R+ | s− ϕ(s) ≤ d(x, T (x))}.

Taking into account the definition of the function θϕ (by relation (2.10)), from the previous
relation we deduce

d(x, x∗) ≤ sup{s ∈ R+ | s− ϕ(s) ≤ d(x, T (x))} = θϕ(d(x, T (x))).

(iii) Let y∗ ∈ FU be an arbitrary fixed point of the operator U . From (ii), using the
condition b) and the fact that θϕ is monotonically increasing, it follows that

d(y∗, x∗) ≤ θϕ(d(y
∗, T (y∗))) = θϕ(d(U(y∗), T (y∗))) ≤ θϕ(η).

□

Definition 2.7. We say that a sequence of functions fn : R+ → R+, n ∈ N, fulfills the
hypothesis (H0) if, for any sequence (dn)n∈N ⊆ R+ satisfying dn − fn(dn) → 0 as n→ ∞,
we have dn → 0 as n→ ∞.
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Theorem 2.4. Let us consider a sequence of functions φn : R+ → R+, n ∈ N, satisfying the
conditions:

1) φn is monotonically increasing;
2) φn is right-continuous;
3) φn(t) < t for all t > 0;

and a function ψ ∈ Ψ. Let (X, d) be a complete metric space and a sequence of operators Tn :
X → X , n ∈ N, verifying the condition:

(2.12) ψ(d(Tn(x), Tn(y))) ≤ φn(ψ(d(x, y))), (∀)x, y ∈ X.

Suppose that:
a) the sequence of functions φn, n ∈ N, converges uniformly to a function φ : R+ → R+,

with φ(t) ̸= t for all t > 0;
b) the sequence of operators Tn, n ∈ N, converges pointwise to an operator T : X → X .

Then, the following statements are true:
(i) ϕn : R+ → R+, ϕn(t) = sup{s ∈ R+ | ψ(s) ≤ φn(ψ(t))} is a comparison function, for

every n ∈ N;
(ii) Tn is a ϕn-contraction, for every n ∈ N;

(iii) Tn is a Picard operator, for every n ∈ N;
(iv) ϕ : R+ → R+, ϕ(t) = sup{s ∈ R+ | ψ(s) ≤ φ(ψ(t))} is a comparison function;
(v) T is a ϕ-contraction;

(vi) T is a Picard operator;
(vii) in the hypothesis that the function ψ is subadditive and the sequence of functions φn,

n ∈ N, fulfills the hypothesis (H0), if x∗n, n ∈ N, x∗ are, respectively, the unique fixed
points of the operators Tn, n ∈ N, T , then x∗n → x∗ as n→ ∞;

(viii) in the hypothesis that the sequence of functions ϕn, n ∈ N, fulfills the hypothesis (H0),
if x∗n, n ∈ N, x∗ are, respectively, the unique fixed points of the operators Tn, n ∈ N, T ,
then x∗n → x∗ as n→ ∞.

Proof. (i) Let n ∈ N be an arbitrary number. We remark that the functions φn, ψ fulfill the
hypotheses of Lemma 2.4. Therefore, the function ϕn : R+ → R+, ϕn(t) = sup{s ∈ R+ |
ψ(s) ≤ φn(ψ(t))} is a comparison function (according to Lemma 2.4 (ix)).

(ii), (iii) Consider n ∈ N. We see that the hypotheses of Theorem 2.2 are satisfied by the
functions φn, ψ, the complete metric space (X, d) and the operator Tn : X → X . Applying
Theorem 2.2 (i) we deduce that Tn is a ϕn-contraction and by Theorem 2.2 (ii) we obtain
that Tn is a Picard operator.

(iv) First, we show that φ : R+ → R+ is monotonically increasing. Let t1 < t2 be
arbitrary points in R+. As φn : R+ → R+, n ∈ N, are monotonically increasing, it follows
that φn(t1) ≤ φn(t2), n ∈ N. Passing to the limit as n → ∞, in the previous inequality,
and taking into account that the sequence of functions φn, n ∈ N, converges uniformly to
the function φ (according to the hypothesis a)), it follows that φ(t1) ≤ φ(t2), which means
that φ is monotonically increasing.

Next, we prove that φ is right-continuous on R+. We choose t0 ∈ R+ and ε > 0 be
arbitrary numbers. As the sequence φn(t) → φ(t) as n → ∞, uniformly on R+ (by the
hypothesis a)), it follows that for ε

3 > 0 there exists a number n(ε) ∈ N (which does not
depend on t) such that

(2.13) |φn(t)− φ(t)| < ε

3
, (∀)n ≥ n(ε), (∀)t ∈ R+.

Since φn(ε) is right-continuous at t0, we find that for ε
3 > 0 there exists δ(ε) > 0 such that

(2.14) φn(ε)(t0)−
ε

3
< φn(ε)(t) < φn(ε)(t0) +

ε

3
, (∀)t ∈ (t0, t0 + δ(ε)) ∩ R+.
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Considering the inequalities (2.13) and (2.14) we deduce that

|φ(t)− φ(t0)| = |φ(t)− φn(ε)(t) + φn(ε)(t)− φn(ε)(t0) + φn(ε)(t0)− φ(t0)|
≤ |φ(t)− φn(ε)(t)|+ |φn(ε)(t)− φn(ε)(t0)|+ |φn(ε)(t0)− φ(t0)|
= |φn(ε)(t)− φ(t)|+ |φn(ε)(t)− φn(ε)(t0)|+ |φn(ε)(t0)− φ(t0)|

<
ε

3
+
ε

3
+
ε

3
= ε, (∀)t ∈ (t0, t0 + δ(ε)) ∩ R+,

hence φ(t0) − ε < φ(t) < φ(t0) + ε, (∀)t ∈ (t0, t0 + δ(ε)) ∩ R+. As the number ε > 0 was
chosen arbitrarily, we find that for every ε > 0 there exists δ(ε) > 0 such that

φ(t0)− ε < φ(t) < φ(t0) + ε, (∀)t ∈ (t0, t0 + δ(ε)) ∩ R+,

i.e. φ is right-continuous at t0. Since the number t0 ∈ R+ was arbitrarily selected, we
deduce that φ is right-continuous on R+.

Further, we demonstrate that φ(t) < t for all t > 0. From the hypothesis 3) we have
φn(t) < t for all t > 0, n ∈ N. Passing to the limit as n → ∞, in the previous inequality,
and taking into account that the sequence of functions φn, n ∈ N, converges uniformly to
the function φ (according the hypothesis a)), it folows that φ(t) ≤ t for all t > 0. Moreover,
by the hypothesis a) we have φ(t) ̸= t for all t > 0. Therefore, φ(t) < t for all t > 0.

Consequently, we proved that the function φ : R+ → R+ has the following properties:
φ is monotonically increasing, φ is right-continuous and φ(t) < t for all t > 0. Also, we
have ψ ∈ Ψ. It follows that the functions φ,ψ fulfill the hypotheses of Lemma 2.4. There-
fore, the function ϕ : R+ → R+, ϕ(t) = sup{s ∈ R+ | ψ(s) ≤ φ(ψ(t))} is a comparison
function (according to Lemma 2.4 (ix)).

(v), (vi) Let x, y ∈ X be arbitrary elements. According to the hypothesis b), the se-
quence of operators Tn, n ∈ N, converges pointwise to an operator T : X → X . It re-
sults that Tn(x) → T (x) as n → ∞ and Tn(y) → T (y) as n → ∞. Since the metric
d : X×X → R+ is a continuous function, we deduce that d(Tn(x), Tn(y)) → d(T (x), T (y))
as n → ∞. Also, the function ψ being a continuous function (according to Definition 2.6
(i)), the previous property implies

(2.15) ψ(d(Tn(x), Tn(y))) → ψ(d(T (x), T (y))) as n→ ∞.

On the other hand, by the hypothesis a), the sequence of functions φn, n ∈ N, converges
uniformly to a function φ. It follows that

(2.16) φn(ψ(d(x, y))) → φ(ψ(d(x, y))) as n→ ∞.

Passing to the limit as n→ ∞, in the inequality (2.12), and taking into account the relations
(2.15), (2.16), we obtain ψ(d(T (x), T (y))) ≤ φ(ψ(d(x, y))). As the elements x, y ∈ X were
chosen arbitrarily, we find that

(2.17) ψ(d(T (x), T (y))) ≤ φ(ψ(d(x, y))), (∀)x, y ∈ X.

From the proof of the statement (iv) we have that the function φ : R+ → R+ has the
following properties: φ is monotonically increasing, φ is right-continuous and φ(t) < t for
all t > 0. Also, we have ψ ∈ Ψ. It follows that the hypotheses of Theorem 2.2 are satisfied
by the functions φ,ψ, the complete metric space (X, d) and the operator T : X → X .
Applying Theorem 2.2 (i) we deduce that T is a ϕ-contraction and by Theorem 2.2 (ii) we
obtain that T is a Picard operator.

(vii) Let n ∈ N be an arbitrary number. As x∗n, x∗ are, respectively, the unique fixed
points of the operators Tn, T , using the properties of the metric d we get

(2.18) d(x∗n, x
∗) = d(Tn(x

∗
n), T (x

∗)) ≤ d(Tn(x
∗
n), Tn(x

∗)) + d(Tn(x
∗), T (x∗)).
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Considering that ψ is monotonically increasing (according to Definition 2.6 (ii)), ψ is sub-
additive (by the hypothesis of the statement (vii)) and using the inequality (2.12) for
x := x∗n, y := x∗, from the relation (2.18) we deduce

ψ(d(x∗n, x
∗)) ≤ ψ(d(Tn(x

∗
n), Tn(x

∗)) + d(Tn(x
∗), T (x∗)))

≤ ψ(d(Tn(x
∗
n), Tn(x

∗))) + ψ(d(Tn(x
∗), T (x∗)))

≤ φn(ψ(d(x
∗
n, x

∗))) + ψ(d(Tn(x
∗), T (x∗))),

hence

(2.19) ψ(d(x∗n, x
∗))− φn(ψ(d(x

∗
n, x

∗))) ≤ ψ(d(Tn(x
∗), T (x∗))).

On the other hand, the function φn fulfills the hypotheses of Lemma 2.4, thus φn(0) = 0
(according to Lemma 2.4 (i)). Also, by the hypothesis 3), φn(t) < t for all t > 0. Therefore,
φn(t) ≤ t for all t ∈ R+. Considering that d(x∗n, x∗) ∈ R+ and ψ : R+ → R+, we obtain
ψ(d(x∗n, x

∗)) ∈ R+, hence φn(ψ(d(x
∗
n, x

∗))) ≤ ψ(d(x∗n, x
∗)), thus

(2.20) 0 ≤ ψ(d(x∗n, x
∗))− φn(ψ(d(x

∗
n, x

∗))).

Combining the inequalities (2.19), (2.20) and taking into account that the number n ∈ N
was arbitrarily selected, we find

(2.21) 0 ≤ ψ(d(x∗n, x
∗))− φn(ψ(d(x

∗
n, x

∗))) ≤ ψ(d(Tn(x
∗), T (x∗))), (∀)n ∈ N.

According to the hypothesis b), the sequence of operators Tn, n ∈ N, converges point-
wise to an operator T : X → X . It results that Tn(x∗) → T (x∗) as n → ∞, hence
d(Tn(x

∗), T (x∗)) → 0 as n → ∞. Since the function ψ is continuous (by Definition 2.6
(i)) and ψ(0) = 0 (by Definition 2.6 (iii)), we get

(2.22) ψ(d(Tn(x
∗), T (x∗))) → ψ(0) = 0 as n→ ∞.

Passing to the limit as n→ ∞, in the inequality (2.21), and considering the relation (2.22),
we deduce

(2.23) ψ(d(x∗n, x
∗))− φn(ψ(d(x

∗
n, x

∗))) → 0 as n→ ∞.

As (ψ(d(x∗n, x∗))n∈N ⊆ R+ and the sequence of functions φn, n ∈ N, fulfills the hypothesis
(H0) (according to the hypothesis of the statement (vii)), from the relation (2.23) we obtain

(2.24) ψ(d(x∗n, x
∗)) → 0 as n→ ∞.

Taking into account that ψ is continuous (by Definition 2.6 (i)) and ψ(t) = 0 if and only
if t = 0 (by Definition 2.6 (iii)), the relation (2.24) implies d(x∗n, x∗) → 0 as n → ∞, hence
x∗n → x∗ as n→ ∞.

(viii) Choose n ∈ N. As x∗n, x∗ are, respectively, the unique fixed points of the oper-
ators Tn, T , using the properties of the metric d and the fact that Tn is a ϕn-contraction
(according to (ii)), we get

d(x∗n, x
∗) = d(Tn(x

∗
n), T (x

∗)) ≤ d(Tn(x
∗
n), Tn(x

∗)) + d(Tn(x
∗), T (x∗))

≤ ϕn(d(x
∗
n, x

∗)) + d(Tn(x
∗), T (x∗)),

hence

(2.25) d(x∗n, x
∗)− ϕn(d(x

∗
n, x

∗)) ≤ d(Tn(x
∗), T (x∗)).

Because the functions φn, ψ fulfill the hypotheses of Lemma 2.4, it follows that ϕn(t) ≤ t
for all t ∈ R+ (according to Lemma 2.4 (iv)). Considering that d(x∗n, x∗) ∈ R+ we obtain
ϕn(d(x

∗
n, x

∗)) ≤ d(x∗n, x
∗), thus

(2.26) 0 ≤ d(x∗n, x
∗)− ϕn(d(x

∗
n, x

∗)).
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Combining the inequalities (2.25), (2.26) and taking into account that the number n ∈ N
was arbitrarily selected, we find

(2.27) 0 ≤ d(x∗n, x
∗)− ϕn(d(x

∗
n, x

∗)) ≤ d(Tn(x
∗), T (x∗)), (∀)n ∈ N.

According to the hypothesis b), the sequence of operators Tn, n ∈ N, converges pointwise
to an operator T : X → X . It results that Tn(x∗) → T (x∗) as n→ ∞, hence

(2.28) d(Tn(x
∗), T (x∗)) → 0 as n→ ∞.

Passing to the limit as n→ ∞, in the inequality (2.27), and considering the relation (2.28),
we get

(2.29) d(x∗n, x
∗)− ϕn(d(x

∗
n, x

∗)) → 0 as n→ ∞.

As the sequence of functions ϕn, n ∈ N, fulfills the hypothesis (H0) (according to the
hypothesis of the statement (viii)), from relation (2.29) we deduce d(x∗n, x∗) → 0 as n→ ∞,
hence x∗n → x∗ as n→ ∞. □

3. AN APPLICATION TO EPIDEMIOLOGICAL MODELS

In the following, we will apply Theorem 2.2 to study the existence and uniqueness of
the solution for the integral equation

(3.30) x(t) = [g1(t) +

t∫
a

K1(t, s, x(s))ds] · [g2(t) +
t∫

a

K2(t, s, x(s))ds], t ∈ [a, b],

under certain hypotheses about functions gi, Ki, i = 1, 2. We note that some particular
cases of the equation (3.30) were considered by Griepenberg [3] and Brestovanska [1] to
investigate the spread of an infectious disease.

Theorem 3.5. We suppose that the functions gi, Ki, i = 1, 2, fulfill the conditions:
(i) gi ∈ C([a, b],R), Ki ∈ C([a, b]× [a, b]× R,R), i = 1, 2;

(ii) there are MKi > 0, i = 1, 2, such that

|Ki(t, s, u)| ≤MKi
, for all t, s ∈ [a, b], u ∈ R, i = 1, 2;

(iii) if we denote by Mgi = max
t∈[a,b]

|gi(t)|, i = 1, 2, then

(Mg1 +MK1
(b− a))2 + (Mg2 +MK2

(b− a))2 ≤ 1

2(b− a)2
;

(iv) there exists a function φ : R+ → R+ satisfying the conditions: φ is monotonically
increasing, φ is right-continuous, φ(t) < t for all t > 0, such that

|Ki(t, s, u)−Ki(t, s, v)|2 ≤ φ(|u− v|2), for all t, s ∈ [a, b], u, v ∈ R, i = 1, 2.

Then the equation (3.30) has a unique solution x∗ ∈ C([a, b],R).

Proof. We consider the linear spaceC([a, b],R) := {x : [a, b] → R | x is continuous on [a, b]},
endowed with the maximum norm ∥ ·∥∞ : C([a, b],R) → R+, ∥x∥∞ = max

t∈[a,b]
|x(t)|, and the

the derived metric d∞ : C([a, b],R) × C([a, b],R) → R+, d∞(x, y) = ∥x − y∥∞. It is well
known that (C([a, b],R), d∞) is a complete metric space.

Since the functions gi, Ki, i = 1, 2, satisfy the condition (i), we can define the operator
A : C([a, b],R) → C([a, b],R),

A(x)(t) = [g1(t) +

t∫
a

K1(t, s, x(s))ds] · [g2(t) +
t∫

a

K2(t, s, x(s))ds], t ∈ [a, b].
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We remark that, a function x ∈ C([a, b],R) is a solution of the equation (3.30) if and
only if it is a fixed point of the operator A.

For every x, y ∈ C([a, b],R), t ∈ [a, b], we have successively:

|A(x)(t)−A(y)(t)|

= |[g1(t) +
t∫
a

K1(t, s, x(s))ds] · [g2(t) +
t∫
a

K2(t, s, x(s))ds]

−[g1(t) +
t∫
a

K1(t, s, y(s))ds] · [g2(t) +
t∫
a

K2(t, s, y(s))ds]|

= |[g1(t) +
t∫
a

K1(t, s, x(s))ds] · [g2(t) +
t∫
a

K2(t, s, x(s))ds]

−[g1(t) +
t∫
a

K1(t, s, x(s)]ds) · [g2(t) +
t∫
a

K2(t, s, y(s))ds]

+[g1(t) +
t∫
a

K1(t, s, x(s))ds] · [g2(t) +
t∫
a

K2(t, s, y(s))ds]

−[g1(t) +
t∫
a

K1(t, s, y(s))ds] · [g2(t) +
t∫
a

K2(t, s, y(s))ds]|

= |[g1(t) +
t∫
a

K1(t, s, x(s))ds] · [
t∫
a

(K2(t, s, x(s))−K2(t, s, y(s)))ds]

+[g2(t) +
t∫
a

K2(t, s, y(s))ds] · [
t∫
a

(K1(t, s, x(s))−K1(t, s, y(s)))ds]|

≤ [|g1(t)|+
t∫
a

|K1(t, s, x(s))|ds] ·
t∫
a

|K2(t, s, x(s))−K2(t, s, y(s))|ds

(3.31) +[|g2(t)|+
t∫

a

|K2(t, s, y(s))|ds] ·
t∫

a

|K1(t, s, x(s))−K1(t, s, y(s))|ds.

Considering the condition (ii) we obtain, for all x, y ∈ C([a, b],R), t ∈ [a, b]:
(3.32)

|g1(t)|+
t∫

a

|K1(t, s, x(s))|ds ≤Mg1 +

t∫
a

MK1ds =Mg1 +MK1(t− a) ≤Mg1 +MK1(b− a)

and
(3.33)

|g2(t)|+
t∫

a

|K2(t, s, y(s))|ds ≤Mg2 +

t∫
a

MK2
ds =Mg2 +MK2

(t− a) ≤Mg2 +MK2
(b− a).

Combining the relations (3.31), (3.32) and (3.33), for every x, y ∈ C([a, b],R), t ∈ [a, b], we
deduce:

|A(x)(t)−A(y)(t)|

≤ (Mg1 +MK1(b− a)) ·
t∫

a

|K2(t, s, x(s))−K2(t, s, y(s))|ds

+(Mg2 +MK2
(b− a)) ·

t∫
a

|K1(t, s, x(s))−K1(t, s, y(s))|ds.

Taking into account the inequality (a1b1+a2b2)
2 ≤ (a21+a

2
2)(b

2
1+ b

2
2) (for all a1, a2, b1, b2 ∈

R) and using the condition (iii), from the previous inequality, for all x, y ∈ C([a, b],R),
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t ∈ [a, b], we find:
|A(x)(t)−A(y)(t)|2

≤ [(Mg1 +MK1
(b− a)) ·

t∫
a

|K2(t, s, x(s))−K2(t, s, y(s))|ds

+(Mg2 +MK2(b− a)) ·
t∫

a

|K1(t, s, x(s))−K1(t, s, y(s))|ds]2

≤ [(Mg1 +MK1
(b− a))2 + (Mg2 +MK2

(b− a))2]

·[(
t∫

a

|K1(t, s, x(s))−K1(t, s, y(s))|ds)2 + (

t∫
a

|K2(t, s, x(s))−K2(t, s, y(s))|ds)2]

(3.34)

≤ 1

2(b− a)2
·[(

t∫
a

|K1(t, s, x(s))−K1(t, s, y(s))|ds)2+(

t∫
a

|K2(t, s, x(s))−K2(t, s, y(s))|ds)2].

Considering the Cauchy–Schwarz inequality, the condition (iv) and the fact that φ is a
monotonically increasing function (being a comparison function), we get, for all x, y ∈
C([a, b],R), t ∈ [a, b], i = 1, 2:

(

t∫
a

|Ki(t, s, x(s))−Ki(t, s, y(s))|ds)2 = (

t∫
a

|Ki(t, s, x(s))−Ki(t, s, y(s))| · 1ds)2

≤
t∫

a

|Ki(t, s, x(s))−Ki(t, s, y(s))|2ds ·
t∫

a

12ds

≤
t∫

a

φ(|x(s)− y(s)|2)ds · (t− a) ≤
t∫

a

φ(( max
s∈[a,b]

|x(s)− y(s)|)2)ds · (t− a)

=

t∫
a

φ(∥x− y∥2∞)ds · (t− a) = φ(∥x− y∥2∞) ·
t∫

a

ds · (t− a)

(3.35) = φ(∥x− y∥2∞) · (t− a)2 ≤ φ(∥x− y∥2∞) · (b− a)2 = φ(d2∞(x, y)) · (b− a)2.

From the inequalities (3.34) and (3.35), for every x, y ∈ C([a, b],R), t ∈ [a, b], we obtain:

|A(x)(t)−A(y)(t)|2

≤ 1

2(b− a)2
· (φ(d2∞(x, y)) · (b− a)2 + φ(d2∞(x, y)) · (b− a)2) = φ(d2∞(x, y)),

hence
d2∞(A(x), A(y)) = ∥A(x)−A(y)∥2∞ = ( max

t∈[a,b]
|A(x)(t)−A(y)(t)|)2 =

= max
t∈[a,b]

(|A(x)(t)−A(y)(t)|2) ≤ φ(d2∞(x, y)).

Considering the function ψ : R+ → R+, ψ(t) = t2, we remark that ψ ∈ Ψ and the previous
inequality can be written as

(3.36) ψ(d∞(A(x), A(y))) ≤ φ(ψ(d∞(x, y))), (∀)x, y ∈ C([a, b],R).
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Consequently, (C([a, b],R), d∞) is a complete metric space, ψ ∈ Ψ, φ : R+ → R+ is a
function satisfying the conditions: φ is monotonically increasing, φ is right-continuous,
φ(t) < t for all t > 0 and A : C([a, b],R) → C([a, b],R) is an operator which satisfies the
inequality (3.36). It follows that the hypotheses of Theorem 2.2 are fulfilled, therefore A is
a Picard operator, hence the equation (3.30) has a unique solution x∗ ∈ C([a, b],R). □

We note that the particular case for which there are LKi
> 0, i = 1, 2, such that

|Ki(t, s, u)−Ki(t, s, v)| ≤ LKi |u− v|, for all t, s ∈ [a, b], u, v ∈ R, i = 1, 2,

was investigated by Olaru [7].

4. CONCLUSIONS

In this study, we define the concept of perturbed metric within the metric spaces and
we obtained a fixed point result for self-mappings satisfying such contractive conditions.
The established theorem generalize some results presented in the literature forφ-contractions.
Further, the main theorem was applied to continuous data dependence of the fixed points
of Picard operators defined on spaces with perturbed metrics. Finally, an application to
the study of the existence and uniqueness of the solution for an integral equation, which
models an epidemiological problem, was presented in the last part of the paper.
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