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Extragradient method with a new adaptive step size for
solving non-Lipschitzian pseudo-monotone variational
inequalities

DUONG VIET THONG

ABSTRACT. The purpose of this work is to develop a new version of the extragradient method for solving
non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. First, we prove a suffi-
cient condition for weak convergence of a proposed algorithm under relaxed assumptions. Next, under strong
pseudomonotonicity and Lipschitz continuity assumptions, we obtain also a Q-linear convergence rate of this
algorithm. Our results improve some recent contributions in the literature on the extragradient method.

1. INTRODUCTION

We are focus on the following classical variational inequality (VI) ([10, 11]) which con-
sists in finding a point x∗ ∈ C such that

(1.1) 〈Fx∗, x− x∗〉 ≥ 0 ∀x ∈ C,
where C is a nonempty closed convex subset in a real Hilbert space H, and F : C → H
is a single-valued mapping. As commonly done, we denote by Sol(C,F ) the solution set
of VI (1.1). Variational inequalities are fundamental in a broad range of mathematical and
applied sciences; the theoretical and algorithmic foundations as well as the applications
of variational inequalities have been extensively studied in the literature and continue to
attract intensive research. For the current state of the art in finite dimensional setting, see
for instance [9] and the extensive list of references therein.

Many authors have proposed and analyzed several iterative methods for solving the
variational inequality (1.1). The simplest one is the following projection method, which
can be seen an extension of the projected gradient method introduced for solving opti-
mization problems.

xn+1 = PC(xn − τFxn),

for each n ≥ 1, where PC denotes by the metric projection from H onto C. It is shown
that the convergence of this method is quite restrictive and assume that F is L-Lipschitz

continuous and α-strongly monotone (will be explained in the sequel), and τ ∈
(

0,
2α

L2

)
.

To avoid the hypothesis of the strong monotonicity, Korpelevich [20] (also indepen-
dently by [1]) proposed a double projection method known as the extragradient method
in Euclidean space when F is monotone and L-Lipschitz continuous. The iterative step of
the method is a s follows.

(1.2) x0 ∈ C, yn = PC(xn − τnFxn), xn+1 = PC(xn − τnFyn),

where τn ∈
(

0,
1

L

)
.
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In recent years, the extragradient method was further extended to infinite-dimensional
spaces in various ways, see, e.g. [6, 3, 4, 5, 12, 15, 19, 21, 22, 25, 24, 23, 28, 29] and the
references therein.

However, when the inequality variational mapping is not Lipschitz continuous or its
Lipschitz constant L is difficult to compute/approximate, Korpelevich’s method fails
since the step-size τn depends on this. Indeed, we give an academic example of a vari-
ational inequality problem in the infinite dimensional spaces which shows that the mapping is
pseudo-monotone and uniformly continuous on C but it fails to be Lipschitz continuous on
C with the solution set of the variational inequality mapping is nonempty. Hence, the
method (1.2) cannot be applied.

Example 1.1. Consider the Hilbert space

H = l2 :=

{
u = (u1, u2, . . . , un, . . .) |

∞∑
n=1

|un|2 < +∞

}
equipped with the inner product and induced norm on H :

〈u, v〉 =

∞∑
n=1

unvn and ‖u‖ =
√
〈u, u〉

for any u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .) ∈ H.
Consider the set and the mapping:

C = {u ∈ H | ‖u‖ ≤ α}, Fu =

(
(‖u‖+ α)− 1

‖u‖+ α

)
u

where α > 1 is a positive real number.

With this C and F , it is easy to see that Sol(C,F ) = {0} and moreover, F is pseudo-
monotone and uniformly continuous on C but F fails to be Lipschitz continuous on C.

First observe that since α > 1, we get that(
(‖u‖+ α)− 1

‖u‖+ α

)
> 0 ∀u ∈ C.

Now let u, v ∈ C be such that 〈Fu, v − u〉 ≥ 0. This implies that 〈u, v − u〉 ≥ 0.
Consequently,

〈Fv, v − u〉 =

(
(‖u‖+ α)− 1

‖u‖+ α

)
〈v, v − u〉

≥
(

(‖u‖+ α)− 1

‖u‖+ α

)
(〈v, v − u〉 − 〈u, v − u〉)

=

(
(‖u‖+ α)− 1

‖u‖+ α

)
‖v − u‖2 ≥ 0

meaning that F is pseudo-monotone.
Now, since C is compact, the mapping F is uniformly continuous on C.
Finally we show that F is not Lipschitz continuous on C. Assume to the contrary that

F is Lipschitz continuous on C, i.e., there exists L > 0 such that

‖Fu− Fv‖ ≤ L‖u− v‖ ∀u, v ∈ C.
Let u = (L, 0, ..., 0, ...) and v = (0, 0, ..., 0, ...) then

‖Fu− Fv‖ = ‖Fu‖ =

(
(‖u‖+ α)− 1

‖u‖+ α

)
‖u‖ =

(
(L+ α)− 1

L+ α

)
L.
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Thus, ‖Fu− Fv‖ ≤ L‖u− v‖ is equivalent to(
(L+ α)− 1

L+ α

)
L ≤ L2,

equivalently

L+ α ≤ L+
1

L+ α
< L+ 1,

which implies that α < 1, and this leads to a contraction and thus F is not Lipschitz
continuous on C.

Motivated by Example 1.1, it would be of interest to propose an iterative method for
solving Sol(C,F ) for which the underline cost function F is uniformly continuous on
bounded subsets of C but not Lipschitz continuous on C. Iusem [16] proposed the fol-
lowing algorithm so that it can solve this problem.

Algorithm 1.

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn − τnFxn)

where τn := γlmn and mn is the smallest non-negative integer m satisfying

γlm‖Fxn − PC(xn − γlmFxn)‖ ≤ µ‖xn − PC(xn − γlmFxn)‖.

If xn = yn then stop and xn is a solution of Sol(C,F ). Otherwise
Step 2. Compute

xn+1 = PC(xn − βnFyn),

where

βn :=
〈Fyn, xn − yn〉
‖Fyn‖2

.

Set n := n+ 1 and go to Step 1.

Recently, Cai et al. [2] constructed a modification of the subgradient extragradient
method [3] which converges under a weaker condition in Hilbert spaces. To be more
specific, they assumed that F is uniformly continuous pseudo-monotone operator and
proved a strong convergence theorem under some appropriate conditions imposed on
the parameters. In particular, they introduced the algorithm which uses a different Armijo-
type line-search and then F is only assumed to be pseudo-monotone on C in the sense of
Karamardian [18]. In this paper, motivated by the works of Cai et al., we propose a new
extragradient method for solving variational inequality problems of pseudo-monotone
and non-Lipschitz continuous operator in real Hilbert spaces. We present weak conver-
gence and convergence rate of the proposed algorithm in real Hilbert spaces under suit-
able conditions. Our results improve some recent contributions in the literature.

The paper is organized as follows. We first recall some basic definitions and results in
Section 2. Our algorithms are presented and analysed in Section 3.
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2. PRELIMINARIES

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H .
The weak convergence of {xn}∞n=1 to x is denoted by xn ⇀ x as n→∞, while the strong
convergence of {xn}∞n=1 to x is written as xn → x as n→∞. For each x, y ∈ H we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Definition 2.1. Let T : H → H be an operator.

(1) The operator T is called L-Lipschitz continuous with L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ H.

(2) The operator T is called monotone if

〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ H.

(3) The operator T is called pseudo-monotone if

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0 ∀x, y ∈ H.

(4) The operator T is called α-strongly monotone if there exists a constant α > 0
such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ H.
(5) The operator T is called sequentially weakly continuous if for each se-

quence {xn}we have: {xn} converges weakly to x implies Txn converges weakly
to Tx.

It is easy to see that general monotone operator is pseudo-monotone but the converse is
not true.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx such
that ‖x−PCx‖ ≤ ‖x−y‖ ∀y ∈ C. PC is called the metric projection ofH onto C. It is known
that PC is nonexpansive.

Lemma 2.1. ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x ∈ H and z ∈ C. Then z = PCx⇐⇒ 〈x− z, z − y〉 ≥ 0 ∀y ∈ C.

Lemma 2.2. ([14]) Let C be a closed and convex subset in a real Hilbert space H, x ∈ H . Then
i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 ∀y ∈ C;
ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 ∀y ∈ C;
iii) 〈(I − PC)x− (I − PC)y, x− y〉 ≥ ‖(I − PC)x− (I − PC)y‖2 ∀y ∈ C.

For properties of the metric projection, the interested reader could be referred to [14,
Section 3].

The following Lemmas are useful for the convergence of our proposed methods.

Lemma 2.3. ([8]) For x ∈ H and α ≥ β > 0 the following inequalities hold.

‖x− PC(x− αAx)‖
α

≤ ‖x− PC(x− βAx)‖
β

,

‖x− PC(x− βAx)‖ ≤ ‖x− PC(x− αAx)‖.

Lemma 2.4. ([17]) LetH1 andH2 be two real Hilbert spaces. SupposeA : H1 → H2 is uniformly
continuous on bounded subsets of H1 and M is a bounded subset of H1. Then A(M) (the image
of M under A) is bounded.
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Lemma 2.5. [7, Lemma 2.1] Consider the problem V I(C,A) with C being a nonempty, closed,
convex subset of a real Hilbert space H and A : C → H being pseudo-monotone and continuous.
Then, x∗ is a solution of V I(C,A) if and only if

〈Ax, x− x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.6. ([26]) Let C be a nonempty set of H and {xn} be a squence in H such that the
following two conditions hold:
i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Definition 2.2. [27] Let {xn} be a sequence in H.
i) {xn} is said to converge R-linearly to x∗ with rate ρ ∈ [0, 1) if there is a constant c > 0 such
that

‖xn − x∗‖ ≤ cρn ∀n ∈ N.
ii) {xn} is said to converge Q-linearly to x∗ with rate ρ ∈ [0, 1) if

‖xn+1 − x∗‖ ≤ ρ‖xn − x∗‖ ∀n ∈ N.

3. MAIN RESULTS

In this section, we introduce the new modification of extragradient method solving the VI
(1.1). We present the weak convergence and convergence rate of the sequence generated
by the proposed method under the suitable assumptions. The proposed algorithm is of
the form:

Algorithm 2. Given γ > 0, l, µ ∈ (0, 1). Let v0 ∈ C be arbitrary.
Compute

yn = PC(vn − τnFvn),

vn+1 = PC(vn − τnFyn),

with τn := γlmn where mn is the smallest nonnegative integer m satisfying

γlm〈FPC(vn − γlmFvn)− Fvn, PC(vn − γlmFvn)− PC(vn − γlmFPC(vn − γlmFvn)〉

≤ µ

2
(‖vn − PC(vn − γlmFvn)‖2 + ‖PC(vn − γlmFvn)− PC(vn − γlmPC(vn − γlmFvn))‖2).

(3.3)

Remark 3.1. (3.3) can rewritten as follows

γlm〈Fyn − Fvn, yn − vn+1〉 ≤
µ

2
(‖vn − yn‖2 + ‖yn − vn+1‖2).

3.1. Weak convergence. To prove the weak convergence we need the following condi-
tions:

Condition 1. The feasible set C of the VI (1.1) is a nonempty, closed, and convex subset of the real
Hilbert space H .

Condition 2. The operator F : C → H is a pseudo-monotone, uniformly continuous on bounded
subsets of C. Moreover, the mapping F : C → H satisfies the following condition

(3.4) whenever {xn} ⊂ C, xn ⇀ z, one has ‖Fz‖ ≤ lim inf
n→∞

‖Fxn‖.
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Condition 3. The solution set of the VI (1.1) is nonempty, that is Sol(C,F ) 6= ∅.

We start the algorithm’s convergence analysis by proving that (3.3) terminates after
finite steps.

Lemma 3.7. Assume that the mapping F : C → H is uniformly continuous on bounded subsets
of C. The Armijo-line search rule (3.3) is well defined. In addition, we have τn ≤ γ.

Proof. If vn ∈ Sol(C,F ) then vn = PC(vn − γFvn) and mn = 0. We consider the situation
vn /∈ Sol(C,F ) and assume the contrary that for all m we have

γlm〈FPC(vn − γlmFvn)− Fvn, PC(vn − γlmFvn)− PC(vn − γlmFPC(vn − γlmFvn)〉

>
µ

2
(‖vn − PC(vn − γlmFvn)‖2 + ‖PC(vn − γlmFvn)− PC(vn − γlmPC(vn − γlmFvn))‖2).

(3.5)

By Cauchy-Schwartz inequality, we have

γlm〈FPC(vn − γlmFvn)− Fvn, PC(vn − γlmFvn)− PC(vn − γlmFPC(vn − γlmFvn)〉

≤ γlm‖FPC(vn − γlmFvn)− Fvn‖‖PC(vn − γlmFvn)− PC(vn − γlmFPC(vn − γlmFvn)‖,
(3.6)

and

(‖vn − PC(vn − γlmFvn)‖2 + ‖PC(vn − γlmFvn)− PC(vn − γlmPC(vn − γlmFvn))‖2)

≥2‖vn − PC(vn − γlmFvn)‖‖PC(vn − γlmFvn)− PC(vn − γlmPC(vn − γlmFvn))‖.
(3.7)

Combining (3.5) and (3.6) and (3.7) we find

(3.8) γlm‖FPC(vn − γlmFvn)− Fvn‖ > µ‖PC(vn − γlmFvn)− vn‖.

This implies that

(3.9) ‖Fvn − FPC(vn − γlmFvn)‖ > µ
‖vn − PC(vn − γlmFvn)‖

γlm
.

Since vn ∈ C for all n and PC is continuous, we have limm→∞ ‖vn−PC(vn−γlmFvn)‖ = 0.
From the uniform continuity of the operator F on bounded subsets of C it implies that

(3.10) lim
m→∞

‖Fvn − FPC(vn − γlmFvn)‖ = 0.

Combining (3.9) and (3.10) we get

(3.11) lim
m→∞

‖vn − PC(vn − γlmFvn)‖
γlm

= 0.

Assume that zm = PC(xn − γlmFvn) we have

〈zm − vn + γlmFvn, x− zm〉 ≥ 0 ∀x ∈ C.

This implies that

(3.12) 〈zm − vn
γlm

, x− zm〉+ 〈Fvn, x− zm〉 ≥ 0 ∀x ∈ C.

Taking the limit m→∞ in (3.12) and using (3.11) we obtain

〈Fvn, x− vn〉 ≥ 0 ∀x ∈ C,

which implies that vn ∈ Sol(C,F ) this is a contraction. �
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Lemma 3.8. Assume that Conditions 1–3 hold and let {vn} be any sequence generated by Algo-
rithm 2. If there exists a subsequence {vnk

} of {vn} such that {vnk
} converges weakly to z ∈ C

and limk→∞ ‖vnk
− ynk

‖ = 0 then z ∈ Sol(C,F ).

Proof. We have ynk
= PC(vnk

− τnk
Fvnk

) thus,

〈vnk
− τnk

Fvnk
− ynk

, x− ynk
〉 ≤ 0 ∀x ∈ C.

or equivalently
1

τnk

〈vnk
− ynk

, x− ynk
〉 ≤ 〈Fvnk

, x− ynk
〉 ∀x ∈ C.

This implies that

(3.13)
1

τnk

〈vnk
− ynk

, x− ynk
〉+ 〈Fvnk

, ynk
− vnk

〉 ≤ 〈Fvnk
, x− vnk

〉 ∀x ∈ C.

Now, we show that

(3.14) lim inf
k→∞

〈Fvnk
, x− vnk

〉 ≥ 0.

For showing this, we consider two possible cases. Suppose first that lim infk→∞ τnk
>

0. We have {vnk
} is a bounded sequence, F is uniformly continuous on bounded subsets

of C. By Lemma 2.5, we get that {Fvnk
} is bounded. Taking k → ∞ in (3.13) since

‖vnk
− ynk

‖ → 0, we get
lim inf
k→∞

〈Fvnk
, x− vnk

〉 ≥ 0.

Now, we assume that lim infk→∞ τnk
= 0. Assume znk

= PC(vnk
− τnk

.l−1Fvnk
), we have

τnk
l−1 > τnk

. Applying Lemma 2.3, we obtain

‖vnk
− znk

‖ ≤ 1

l
‖vnk

− ynk
‖ → 0 as k →∞.

Consequently, znk
⇀ z ∈ C, this implies that {znk

} is bounded, which the uniformly
continuity of the operator A on bounded subsets of C it follows that

(3.15) ‖Fvnk
− Fznk

‖ → 0 as k →∞.
By the Armijo line-search rule (3.3) and the proof is similar to the inequality (3.8) we have

τnk
.l−1‖Fvnk

− FPC(vnk
− τnk

l−1Fvnk
)‖ > µ‖vnk

− PC(vnk
− τnk

l−1Fvnk
)‖.

That is,

(3.16)
1

µ
‖Fvnk

− Fznk
‖ > vnk

− znk
‖

τnk
l−1

.

Combining (3.15) and (3.16) we obtain

lim
k→∞

‖vnk
− znk

‖
τnk

l−1
= 0.

Furthermore, we have

〈vnk
− τnk

l−1Fvnk
− znk

, x− znk
〉 ≤ 0 ∀x ∈ C.

This implies that

(3.17)
1

τnk
l−1
〈vnk

− znk
, x− znk

〉+ 〈Fvnk
, znk

− vnk
〉 ≤ 〈Fvnk

, x− vnk
〉 ∀x ∈ C.

Taking the limit k →∞ in (3.17) we get

lim inf
k→∞

〈Fvnk
, x− vnk

〉 ≥ 0.
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Therefore, the inequality (3.14) is proved. Next, we show that z ∈ Sol(C,F ).
Now we choose a sequence {εk} of positive numbers decreasing and tending to 0. For

each k, we denote by Nk the smallest positive integer such that

(3.18) 〈Fvnj
, x− vnj

〉+ εk ≥ 0 ∀j ≥ Nk,

where the existence of Nk follows from (3.14). Since {εk} is decreasing, it is easy to see
that the sequence {Nk} is increasing. Furthermore, for each k, since {vNk

} ⊂ C we have
FvNk

6= 0 and, setting

uNk
=

FvNk

‖FvNk
‖2
,

we have 〈FvNk
, vNk

〉 = 1 for each k. Now, we can deduce from (3.18) that for each k

〈FvNk
, x+ εkuNk

− vNk
〉 ≥ 0.

Since the fact that F is pseudo-monotone, we get

〈F (x+ εkuNk
), x+ εkuNk

− vNk
〉 ≥ 0.

This implies that

(3.19) 〈Fx, x− vNk
〉 ≥ 〈Fx− F (x+ εkuNk

), x+ εkuNk
− vNk

〉 − εk〈Fx, uNk
〉.

Now, we show that limk→∞ εkuNk
= 0. Indeed, we have vnk

⇀ z as k → ∞. Since F
satisfies the condition (3.4). We have

0 < ‖Fz‖ ≤ lim inf
k→∞

‖Fnk
‖ (note that Fz 6= 0 otherwise, z is a solution).

Since {vNk
} ⊂ {vnk

} and εk → 0 as k →∞, we obtain

0 ≤ lim sup
k→∞

‖εkuNk
‖ = lim sup

k→∞

(
εk

‖Fvnk
‖

)
≤ lim supk→∞ εk

lim infk→∞ ‖Fvnk
‖

= 0,

which implies that limk→∞ εkuNk
= 0.

Now, letting k → ∞, then the right hand side of (3.19) tends to zero by F is uniformly
continuous, {vNk

}, {uNk
} are bounded and limk→∞ εkuNk

= 0. Thus, we get

lim inf
k→∞

〈Fx, x− vNk
〉 ≥ 0.

Hence, for all x ∈ C we have

〈Fx, x− z〉 = lim
k→∞

〈Fx, x− vNk
〉 = lim inf

k→∞
〈Fx, x− vNk

〉 ≥ 0.

By Lemma 2.5 we obtain z ∈ Sol(C,F ) and the proof is complete. �

Remark 3.2. When the functionF is monotone, it is not necessary to impose the sequential
weak continuity on F .

Theorem 3.1. Assume that Conditions 1–3 hold. Then any sequence {vn} generated by Algo-
rithm 2 converges weakly to an element of Sol(C,F ).

Proof. Let u∗ be a certain solution of (VIP). We divide the proof into two claims.
Claim 1. There exists N1 ∈ N such that

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − (1− µ)‖yn − vn‖2 − (1− µ)‖vn+1 − yn‖2.
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Indeed, from u∗ ∈ Sol(C,F) ⊂ C, we have

‖vn+1 − u∗‖2 = ‖PTn
(vn − τnFyn)− PTn

u∗‖2 ≤ 〈vn+1 − u∗, vn − τnFyn − u∗〉

=
1

2
‖vn+1 − u∗‖2 +

1

2
‖vn − τnFyn − u∗‖2 −

1

2
‖vn+1 − vn + τnFyn‖2

=
1

2
‖vn+1 − u∗‖2 +

1

2
‖vn − u∗‖2 +

1

2
τ2n‖Fyn‖2 − 〈vn − u∗, τnFyn〉

− 1

2
‖vn+1 − vn‖2 −

1

2
τ2n‖Fyn‖2 − 〈vn+1 − vn, τnFyn〉

=
1

2
‖vn+1 − u∗‖2 +

1

2
‖vn − u∗‖2 −

1

2
‖vn+1 − vn‖2 − 〈vn+1 − u∗, τnFyn〉.

This implies that

(3.20) ‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − ‖vn+1 − vn‖2 − 2〈vn+1 − u∗, τnFyn〉.
Since u∗ is a solution of the problem (VI), we have 〈Fu∗, x− u∗〉 ≥ 0 for all x ∈ C. By the
pseudomontonicity of F on C, we have 〈Fx, x−u∗〉 ≥ 0 for all x ∈ C. Taking x := yn ∈ C,
we get

〈Fyn, u∗ − yn〉 ≤ 0.

Thus we have

〈Fyn, u∗ − vn+1〉 =〈Fyn, u∗ − yn〉+ 〈Fyn, yn − vn+1〉 ≤ 〈Fyn, yn − vn+1〉.(3.21)

From (3.20) and (3.21), we obtain

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − ‖vn+1 − vn‖2 + 2τn〈Fyn, yn − vn+1〉
= ‖vn − u∗‖2 − ‖vn+1 − yn‖2 − ‖yn − vn‖2 − 2〈vn+1 − yn, yn − vn〉

+ 2τn〈Fyn, yn − un+1〉
= ‖vn − u∗‖2 − ‖vn+1 − yn‖2 − ‖yn − vn‖2 + 2〈vn − τnFyn − yn, vn+1 − yn〉.(3.22)

Since yn = PC(vn − τnFvn) and vn+1 ∈ C, we have

2〈vn − τnFyn − yn, vn+1 − yn〉 = 2〈vn − τnFvn − yn, vn+1 − yn〉+ 2τn〈Fvn − Fyn, vn+1 − yn〉
≤ 2τn〈Fvn − Fyn, vn+1 − yn〉.(3.23)

Combining (3.3) and (3.23), we obtain

(3.24) 2〈vn − τnFyn − yn, vn+1 − yn〉 ≤ µ‖vn − yn‖2 + µ‖yn − vn+1‖2.
Substituting (3.24) into (3.22), we obtain

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − (1− µ)‖yn − vn‖2 − (1− µ)‖vn+1 − yn‖2.

Claim 2. Now, we show that {vn} converges weakly to an element of Sol(C,F ). Thanks
to Claim 1 we have

‖vn+1 − u∗‖ ≤ ‖vn − u∗‖.
This implies that for all u∗ ∈ Sol(C,F ) then limn→∞ ‖vn − u∗‖ exists, thus the sequence
{vn} is bounded. Consequently, {vn} is bounded.

On the other hand, according to Claim 1, we get

(1− µ)‖vn − yn‖2 ≤ ‖vn − u∗‖2 − ‖vn+1 − u∗‖2

which implies that

(3.25) lim
n→∞

‖vn − yn‖ = 0.

Since {vn} is a bounded sequence, there exists the subsequence {vnk
} of {vn} such that

{vnk
} converges weakly to z ∈ C. It implies from Lemma 3.8 and (3.25) that z ∈ Sol(C,F ).
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Therefore, we showed that:

i) For every u∗ ∈ Sol(C,A), then limn→∞ ‖vn − u∗‖ exists;

ii) Every sequential weak cluster point of the sequence {vn} is in Sol(C,F ).

By Lemma 2.6 the sequence {vn} converges weakly to an element of Sol(C,F ). �

Remark 3.3. Our results are more general some related results in the literature and hence
might be applied for a wider class of mappings. For example, we next present the advan-
tage of our method compared with the recent result [31, Theorem 3.1].

1. In Theorem 3.1, F : C → H is assumed to be uniformly continuous on bounded
subsets instead of Lipschitz continuous in [31].

2. Note that in our work we use condition (3.4), which is strictly weaker than the
sequential weak continuity of the operator F , an assumption which has frequently been
used in recent articles [2, 31] on pseudomonotone variaional inequality problems.

3.2. Convergence rate. In this section, we provide a result on the convergence rate of the
iterative sequence generated by Algorithm 2.

Theorem 3.2. Assume that F : C → H is L-Lipschitz continuous and δ-strongly pseudomono-
tone on C. Then the sequence {xn} generated by Algorithm 2 converges strongly to u∗ with a
Q- linear rate, where u∗ is a unique solution of VI.

Proof. We have 〈Fu∗, yn − u∗〉 ≥ 0, by the strong pseudomonotonicity of F on C we get

(3.26) 〈Fyn, yn − u∗〉 ≥ δ‖yn − u∗‖2.
Using (3.26), we have

〈Fyn, u∗ − vn+1〉 =〈Fyn, u∗ − yn〉+ 〈Fyn, yn − vn+1〉 ≤ −δ‖yn − u∗‖2 + 〈Fyn, yn − vn+1〉.
(3.27)

Substituting (3.27) into (3.20), we obtain

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − ‖vn+1 − vn‖2 − 2τnδ‖yn − u∗‖2 + 2τn〈Fyn, yn − vn+1〉.
Thus

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − ‖vn+1 − vn‖2 − 2τnδ‖yn − u∗‖2 + 2τn〈Fyn, yn − vn+1〉
= ‖vn − u∗‖2 − ‖vn+1 − yn‖2 − ‖yn − vn‖2 − 2〈vn+1 − yn, yn − vn〉
− 2τnδ‖yn − u∗‖2 + 2τn〈Fyn, yn − vn+1〉

= ‖vn − u∗‖2 − ‖vn+1 − yn‖2 − ‖yn − vn‖2 − 2τnδ‖yn − u∗‖2

+ 2〈vn − τnFyn − yn, vn+1 − yn〉.(3.28)

Substituting (3.24) into (3.28), we obtain

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − (1− µ)‖yn − vn‖2 − (1− µ)‖vn+1 − yn‖2 − 2τnδ‖yn − u∗‖2.
(3.29)

Now we show that τn >
µl

L
for all n. Indeed, by the search rule (3.3), we know that

τn
l

must violate inequality (3.3), i.e.,

〈Fyn − Fvn, yn − vn+1〉 >
µ

2 τnl
(‖vn − yn‖2 + ‖yn − vn+1‖2).
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This follows that

L‖yn − vn‖‖yn − vn+1‖ >
µ

2 τnl
(‖vn − yn‖2 + ‖yn − vn+1‖2).

Thus
L

2
(‖yn − vn‖2 + ‖yn − vn+1‖2) >

µ

2 τnl
(‖vn − yn‖2 + ‖yn − vn+1‖2).

This implies that

(3.30) τn >
µl

L
∀n.

Combining (3.29) and (3.30) we get

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − (1− µ)‖yn − vn‖2 − (1− µ)‖vn+1 − yn‖2 − 2
µl

L
δ‖yn − u∗‖2

≤ ‖vn − u∗‖2 − (1− µ)‖yn − vn‖2 − 2
µl

L
δ‖yn − u∗‖2.(3.31)

Let β := min

{
1− µ

2
,
µl

L
δ

}
. From (3.31), we get

‖vn+1 − u∗‖2 ≤ ‖vn − u∗‖2 − 2β‖yn − vn‖2 − 2β‖yn − u∗‖2

≤ ‖vn − u∗‖2 − β‖vn − u∗‖2

= (1− β)‖vn − u∗‖2.

This implies that
‖vn+1 − u∗‖ ≤

√
(1− β)‖vn − u∗‖.

Since
√

(1− β) ∈ (0, 1), it implies that the sequence {vn} converges strongly to u∗ with a
Q-linear rate. �

4. NUMERICAL ILLUSTRATIONS

In this section, we perform numerical experiments to show the behaviors of Algorithm
2 and compare it with other algorithms. All the numerical experiments are performed on
an HP laptop with Intel(R) Core(TM)i5-6200U CPU 2.3GHz with 4 GB RAM. All the pro-
grams are written in Matlab2015a. The followings are the experiment in detail. Example
4.1 Let F (x) := Mx+ q where

M = BBT + C +D,

and B is an m×m matrix, C is an m×m skew-symmetric matrix, D is an m×m diagonal
matrix, whose diagonal entries are nonnegative (so M is positive semidefinite), q is a
vector in Rm. The feasible set C ⊂ Rm is a box constraints in Rm defined by

C := {x ∈ Rm : 0 ≤ x ≤ 1}.

It is clear that F is monotone and Lipschitz-continuous with constant L = ‖M‖. Let q = 0.
Then, we obtain the solution set Γ = {0}. The parameters are chosen as follows:

Algorithm 2: γ = 0.01, µ = 0.5, l = 0.5, βn = 1
n+2

Algorithm 3.1 in [2]: f(x) = 0.5x, γ = 0.01, µ = 0.5, l = 0.5, βn = 1
n+2 .

Algorithm 3.2 in [13]: f(x) = 0.5x, λ = 0.01, γ = 1, µ = 0.5, l = 0.5, βn = 1
n+2 .

Algorithm 3.1 in [30]: τ0 = 0.001, µ = 0.5, αn = 1
n+2 , βn = 0.99(1− αn).

For experiment, all entries of B, C and D are generated randomly from a normal
distribution with mean zero and unit variance. We use stopping rule ‖xn‖ < 10−7 or
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Iter ≥ 1000 for all algorithms. The numerical results are described in Table 1 and Fig. 1,
Fig. 2.

TABLE 1. Numerical results obtained by other algorithms

Methods m=100 m=200

Sec. Iter. Error. Sec. Iter. Error.
Algorithm 2 0.04 82 8.6284e-08 0.0980 75 9.3728e-08

Algorithm 3.1 in [2] 1.016 1000 0.0014 3.8010 1000 0.0023
Algorithm 3.2 in [13] 0.2410 777 9.9722e-08 1.5350 1000 2.2974e-07
Algorithm 3.1 in [30] 0.1470 1000 4.8767e-04 0.4960 1000 5.6404e-04

Number of iterations
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Alg 3.2 of Gibali

FIGURE 1. Comparison of all algorithms with m = 100

Fig. 1-2 and Table 1 demonstrate that Algorithm 2 performs better than Algorithm 3.1
in [2], Algorithm 3.2 in [13] and Algorithm 3.1 in [30].
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FIGURE 2. Com parison of all algorithms with m = 200
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5. CONCLUSIONS

In this paper we proposed a modification of extragradient method for solving non-
Lipschitzian pseudo-monotone variational inequalities in real Hilbert spaces. Under suit-
able conditions we establish weak convergence and convergence rate of the proposed
scheme. Our work extend and generalize some existing results in the literature.
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