Main Article Content

Abstract

Application of Vesicular Arbuscular Mycorrhiza (VAM) is well known as an environmentally sustainable alternative to chemical fertilizers. However, its efficacy in fortifying plants against damage is still not known. We studied the effect of damage mechanically or by generalist caterpillar, Tobacco cutworm (Spodoptera litura), on soybean (Glycine max) was grown in soil containing VAM. Changes in chlorophyll, carotenoids, phenol and tannin were compared. We found that VAM not only facilitated improvement in growth parameters of soybean, but aided the increase in primary and secondary metabolites following damage. Thus, VAM may prove to be a promising environmentally-sustainable fertilizer in fields.

Keywords

Chlorophyll a and b Carotenoids Phenols Spodoptera litura Tannins Vesicular arbuscular mycorrhiza

Article Details

Author Biographies

Jean Augustin Kituta Rubabura , Research Centre in Natural Sciences, CRSN/Lwiro, DS/Bukavu, DR. Congo

Agricultural Entomology lab, Department of Biology, Research Centre in Natural Sciences, CRSN/Lwiro, DS/Bukavu, DR. Congo

Garima Sharma, Sri Venkateswara College, University of Delhi

Research Fellow, Animal  Plant Interactions lab, Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula Kuan,New Delhi-11002, India

How to Cite
Rubabura , J. A. K., Sharma, G., & Mathur, V. (2020). Effect of environmentally sustainable microbial fertilizer on Insect-induced plant responses. Environment Conservation Journal, 21(1&2), 1–11. https://doi.org/10.36953/ECJ.2020.211201

References

  1. Adriano-Anaya, M. L., Salvador-Figueroa, M., Ocampo, J. A. and García-Romera, I. 2006. Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biology and Biochemistry, 38(5): 879-886.
  2. Aktar, Md. W., Sengupta, D., Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol. Vol. 2(1): 1–12. doi: 10.2478/v10102-009-0001-7
  3. Aliasgharzad, N., Neyshabouri M. R., Salimi G. 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, 61(19): S324-S328.
  4. Antunes, P. M., De Varennes, A., Zhang, T. and Goss, M. J. 2006. The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. Journal of agronomy and crop science, 192(5): 373-378.
  5. Arnon, D. I. 1949. Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology, 24: 1-15.
  6. Aseri, G. K., Jain, N., Panwar, J., Rao, A.V. and Meghwal, P. R. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar desert. Scientia Horticulturae, 117:130-135.
  7. Asghari, H. R., Marschner, P., Smith, S.E. and Smith, F. A. 2005. Growth response of Atriplex nummularia to mycorrhizal inoculation at different salinity levels. Plant and soil, 275:181-193.
  8. Bennick, A. 2002. Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, 13 (2), 184-196.
  9. Bnindon, N. J. and Shelton H. M. 1993. Role of vesicular-arbuscular mycorrhizae in Leucacna establishment. Proceedinigs of the XVII International Grassland congress, 2064-2065.
  10. Boros, B., Jakabová, S., Dörnyei, Á., Horváth, G., Pluhár, Z., Kilár, F. and Felinger, A. 2010. Determination of polyphenolic compounds by liquid chromatography–mass spectrometry in Thymus species. Journal of Chromatography A, 1217(51): 7972-7980.
  11. Caliskan, S., Ozkaya, I., Caliskan, M. E. and Arsalan, M. 2008. The effect of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in Mediterranean type soil. Field Crop Resistance, 108:126-123.
  12. Cardon, Z. G. and Whitbeck, J. L. 2011. The rhizosphere: an ecological perspective. Elsevier.
  13. Cardoso, I. M. and Kuyper, T. W. 2006. Mycorrhizas and tropical soil fertility. Agriculture, ecosystems & environment, 116(1-2): 72-84.
  14. Charles, P., Raj, A. D. S., Kiruba, S. 2006. Arbuscular mycorrhizal fungi in the reclamation and restoration of soil fertility. Mycorrhiza News, 18:13-14.
  15. Chenard, C. H., Kopsell, D. A. and Kopsell, D. E. 2005. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. Journal of plant nutrition, 28(2): 285-297.
  16. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4): 803-814.
  17. Collingborn, F. M., Gowen, S. R. and Mueller-Harvey, I. 2000. Investigations into the biochemical basis for nematode resistance in roots of three musa cultivars in response to radopholus s imilis infection. Journal of Agricultural and Food Chemistry, 48(11): 5297-5301.
  18. Dal Cortivo, C., Barion, G., Ferrari, M., Visioli, G., Dramis, L., Panozzo, A. and Vamerali, T., 2018. Effects of field inoculation with vam and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability, 10(9): 3286.
  19. Dei, H. K. 2011. Soybean as a feed ingredient for livestock and poultry. In Recent trends for enhancing the diversity and quality of soybean products. IntechOpen.
  20. Feucht, W., Treutter, D. and Christ, E., 1997. Role of flavanols in yellowing beech trees of the Black Forest. Tree physiology, 17(5): 335-340.
  21. Fujikake, H., Yamazaki, A., Ohtake, N., Sueyoshi, K., Matsuhashi, S., Ito, T., Mizuniwa, C., Kume, T., Hashimoto, S., Ishioka, N. S. and Watanabe, S. 2003. Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. Journal of Experimental Botany, 54(386): 1379-1388. DOI: 10.1093/jxb/erg147
  22. Glombitza, K. W. and Gerstberger, G. 1985. Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea. Phytochemistry, 24(3): 543-551.
  23. Harborne, J. B. 1980. Plant phenolics, Encyclopedia of Plant Physiology, Secondary, Plant Products, 8: 329-402.
  24. He, Z., He, C., Zhang, Z., Zou, Z. and Wang, H. 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59(2): 128-133.
  25. Jean-Blain, C. 1998. Aspects nutritionnels et toxicologiques des tanins. Revue de Médecine vétérinaire, 149(10): 911-920.
  26. Jeaun, J. M., Annie F. and Chrystian J. L. 2005. Les composés phénoliques des végétaux,: 203- 204.
  27. King, A. M. Y. and Young, G. 1999. Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 99(2): 213-218.
  28. Lancashire, P. D., Bleiholder, H., Boom, T. V. D., Langelüddeke, P., Stauss, R., Weber, E. and Witzenberger, A. 1991. A uniform decimal code for growth stages of crops and weeds. Annals of applied Biology, 119(3): 561-601.
  29. Maillard, M. N. 1996. Contribution à l'amélioration de la stabilité organoleptique de la bière: suivi du comportement de quelques antioxydants endogènes de l'orge et du malt(Doctoral dissertation, École nationale supérieure des industries agricoles et alimentaires (Massy, Essonne).
  30. Makkar, H. P., Siddhuraju, P. and Becker, K. 2007. Plant secondary metabolites. Humana Press.
  31. Mapope, N. and Dakora, F. D. 2016. N2 fixation, carbon accumulation, and plant water relations in soybean (Glycine max L. Merrill) varieties sampled from farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Agriculture, Ecosystems and Environment, 221: 174-186.
  32. Marschner H. 1995. Mineral Nutrition of Higher Plant, 2nd (ed), Academic Press Limeted, Text Book.
  33. Mateos-Aparicio, I., Redondo Cuenca, A., Villanueva-Suárez, M. J. and Zapata-Revilla, M. A. 2008. Soja, una prometedora fuente de salud. Nutrición Hospitalaria, 23(4): 305-312.
  34. Mithöfer, A., Wanner, G. and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiology, 137(3): 1160-1168.
  35. Mueller-Harvey, I. and Mc Allan, A. B. 1992. Tannins: their biochemistry and nutritional properties. Advanced. Plant Cell Biochem. Biotechnol. (1): 151-217.
  36. Naamala, J., Jaiswal, S. K. and Dakora, F. D. 2016. Microsymbiont diversity and phylogeny of native bradyrhizobia associated with soybean (Glycine max L. Merr.) nodulation in South African soils. Systematic and applied microbiology, 39(5): 336-344.
  37. Naher U. A., Radziah O., Shamsuddin Z. H., Halimi M. S. and Mohd Razi I. 2009. Growth Enhancement and Root Colonization of Rice Seedlings by Rhizobium and Corynebacterium spp. International Journal of Agricultural and Biology, 11: 586–590.
  38. Nicholson, R. L. and Hammerschmidt, R. 1992. Phenolic compounds and their role in disease resistance. Annual Review ofPhytopathology, 30: 369-89.
  39. Panhwar, Q. A., Radziah, O., Sariah, M. and Ismail, M. R. 2009. Solubilization of different phosphate forms by phosphate solubilizing bacteria isolated from aerobic rice. Int J Agric Biol, 11(6): 667-673.
  40. Qrbanly, M., Hashemyfar, S. and Fallah, A. 2006. The interaction of irrigation and nitrogen on some morphological and physiological traits of rice plants (Oryza sativa L.). Journal of Agricultural Science, 12(2): 415-428.
  41. Riaz, M. N. 2006. Soy Applications in Food. Boca Raton, FL: CRC Press. ISBN 0-8493-2981-7.
  42. Soka, G. and Ritchie, M. 2014. Arbuscular mycorrhizal symbiosis, ecosystem processes and environmental changes in tropical soils. Applied ecology and environmental research 13(1): 229-245.
  43. Song, F., Song, G., Dong, A. and Kong, X. 2011. Regulatory mechanisms of host plant defense responses to arbuscular mycorrhiza. Acta Ecologica Sinica, 31(6): 322-327.
  44. Tylka G. L., Hussey, R. S. and Roncadori R. W. 1991. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean. Journal of Nematology, 23(I),122-133.
  45. Van Der Heijden, M. G., Bardgett, R. D. and Van Straalen, N. M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters, 11(3): 296-310.
  46. War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S. and Sharma, H. C. 2012. Mechanisms of plant defense against insect herbivores. Plant signaling and behavior, 7(10): 1306-1320.
  47. Wink, M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64: 3–19.
  48. Woodward, A. and Coppock, D. L. 1995. Role of plant defense in the utilization of native browse in southern Ethiopia. Agroforestry Systems, 32 (2): 147-161.
  49. Wu, O. S. and Xia, R. X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163: 417-425.