본문 바로가기
KCI 등재

Synthesis of Ce2O3 and characterization of hydrogen insertion using neutron diffraction and spectroscopic methods

Journal of Ceramic Processing Research
약어 : J. Ceram. Process. Res.
2021 vol.22, no.4, pp.461 - 469
DOI : 10.36410/jcpr.2021.22.4.461
발행기관 : 한양대학교 청정에너지연구소
연구분야 : 재료공학
Copyright © 한양대학교 청정에너지연구소
인용한 논문 수 :   -  
113 회 열람

The catalytic activity of ceria originates from oxygen vacancies. Ce2O3 is the most oxygen-deficient end-member of nonstoichiometricceria, CeO2-x. A new method of synthesizing air-stable Ce2O3 from the micron- and nano-sized CeO2 powderwas developed. The key part of this synthetic process is to reduce the sample in a low-pressure H2 gas (10 Torr) under vacuumat 1300°C. The percentage of the Ce2O3 phase in the reduced sample ranges from 55% ~ 96 wt.% according to the powdersize and reduction time. Hydrogen incorporation in reduced ceria was confirmed by secondary ion mass spectrometry depthprofile analysis and vibrational spectroscopic techniques, such as Raman and Fourier transform infrared spectroscopy. Thesurface region (zero depth) showed the highest H concentration that decreased with increasing profiling depth. The locationsof hydrogen incorporated in the Ce2O3 phase in the reduced sample were revealed by calculating the nuclear densitydistribution. The maximum entropy method-based pattern fitting and Dysnomia program were combined to calculate thenuclear density map using the neutron diffraction data.

ceria, hydrogen insertion, structural analysis, nuclear density distribution, spectroscopy

  • 1. [학술지] G. Jacobs / 2004 / / Catal. Lett. / 96 (1-2) : 97 ~ 1-2
  • 2. [학술지] K. Polychronopoulou / 2011 / / Recent Pat. Mater. Sci / 4 (2) : 122 ~ 2
  • 3. [학술지] F. Dvorak / 2018 / / ACS Catal / 8 (5) : 4354 ~ 5
  • 4. [학술지] K. Sohlberg / 2001 / / J. Am. Chem. Soc / 123 (27) : 6609 ~ 27
  • 5. [학술지] L. Jalowiecki-Duhamel / 2008 / / Catal. Today / 138 (3-4) : 266 ~ 3-4
  • 6. [학술지] K. Werner / 2017 / / J. Am. Chem. Soc / 139 (48) : 17608 ~ 48
  • 7. [학술지] Y. Lara-López / 2019 / Synthesis and characterization of TiO2, CeO2, and TiO2-CeO2 particles forapplication in the treatment of phenol / Journal of Ceramic Processing Research / 20 (1) : 24 ~ 1 kci
  • 8. [학술지] R. Ma / 2016 / / Ceram. Int / 42 (16) : 18495 ~ 16
  • 9. [학술지] Eun-Hui Hyeong / 2012 / Sonochemical synthesis of highly sinterable/nanocrystalline CeO2-based electrolyte powders for intermediatetemperature solid oxide fuel cells / Journal of Ceramic Processing Research / 13 (3) : 349 ~ 3 kci
  • 10. [학술지] J-W. Bae / 2014 / / J. Eur. Ceram. Soc / 34 (15) : 3763 ~ 15
  • 11. [학술지] Ji Young Park / 2020 / Enhanced ionic conductivity and suppressed electronic conductivity of an Al- and Mn-added ceria solid electrolyte / Journal of Ceramic Processing Research / 21 : 63 ~ kci
  • 12. [학술지] Joo-Sin Lee / 2016 / Effects of lithium oxide addition on sintering behavior and electrical conductivity of yttria-doped ceria / Journal of Ceramic Processing Research / 17 (10) : 1078 ~ 10 kci
  • 13. [학술지] S. Masahiro / 2005 / / Bull. Chem. Soc. Jpn / 78 (5) : 752 ~ 5
  • 14. [학술지] Mahsa. Zarinkamar / 2016 / One-step synthesis of ceria (CeO2) nano-spheres by a simple wet chemical method / Journal of Ceramic Processing Research / 17 (3) : 166 ~ 3 kci
  • 15. [학술지] X. Zhang / 2020 / / J. Eur. Ceram. Soc / 40 (12) : 4366 ~ 12
  • 16. [학술지] M. B. Watkins / 2007 / / J. Phys. Chem. C / 111 (42) : 15337 ~ 42
  • 17. [학술지] L. Brugnoli / 2019 / / J. Phys. Chem. C / 123 (42) : 25668 ~ 42
  • 18. [학술지] J. Liu / 2020 / / Ceram. Int / 46 (5) : 5976 ~ 5
  • 19. [학술지] K. Werner / 2017 / / J. Am. Chem. Soc / 139 (48) : 17608 ~ 48
  • 20. [학술지] E. A. KuKmmerle / 1999 / / J. Solid State Chem / 147 (2) : 485 ~ 2
  • 21. [학술지] O. Matz / 2019 / / Top. Catal / 62 (12-16) : 956 ~ 12-16
  • 22. [학술지] V. Stetsovych / 2013 / / J. Phys. Chem. Lett / 4 (6) : 866 ~ 6
  • 23. [학술지] M. García-Melchor / 2014 / / J. Phys. Chem. C / 118 (20) : 10921 ~ 20
  • 24. [학술지] S. Abanades / 2006 / / Sol. Energy / 80 (12) : 1611 ~ 12
  • 25. [학술지] T. Ishida / 2014 / / Energy Procedia / 49 : 1970 ~
  • 26. [학술지] J. Valle-Hernández / 2016 / / AIP Conf. Proc / 1734 : 120008
  • 27. [학술지] J. Höcker / 2017 / / Nanoscale / 9 (27) : 9352 ~ 27
  • 28. [학술지] T. Sata / 1968 / / J. Ceram. Assoc. Japan / 76 (872) : 116 ~ 872
  • 29. [학술지] J. L. G. Fierro / 1987 / / J. Solid State Chem / 66 (1) : 154 ~ 1
  • 30. [학술지] A. Trovarelli / 1996 / / Catal. Rev / 38 (4) : 439 ~ 4
  • 31. [학술지] V. Perrichon / 1995 / / Appl. Catal. A-Gen / 129 (1) : 69 ~ 1
  • 32. [학술지] D. J. M. Bevan / 1964 / / J. Inorg. Nucl. Chem / 26 (9) : 1509 ~ 9
  • 33. [학술지] C. M. Hamm / 2014 / / Z. Anorg. Allg. Chem / 640 (6) : 1050 ~ 6
  • 34. [학술지] F. Izumi / 2011 / / IOP Conf. Ser. : Mater. Sci. Eng / 18 (2) : 022001
  • 35. [학술지] K. Momma / 2011 / / Z. Kristallogr. Proc / 1 : 195 ~
  • 36. [학술지] K. Momma / 2013 / / Powder Diffr / 28 (3) : 184 ~ 3
  • 37. [학술지] A. Kumar / 2009 / / Langmuir / 25 (18) : 10998 ~ 18
  • 38. [학술지] M. F. Bekheet / 2019 / / CrystEngComm / 21 (1) : 145 ~ 1
  • 39. [학술지] T. Hryniewicz / 2011 / / Surf. Coat. Technol / 205 (17-18) : 4228 ~ 17-18
  • 40. [학술지] G. Righi / 2019 / / J. Phys. Chem. C / 123 (15) : 9875 ~ 15
  • 41. [단행본] A. Furrer / 1994 / Neutron Scattering from Hydrogen in Materials / World Scientific Press : 264
  • 42. [학술지] V. A. Sadykov / 2016 / / Open Chem / 14 (1) : 363 ~ 1
  • 43. [학술지] M. Grünbacher / 2018 / / Phys. Chem. Chem. Phys / 20 (34) : 22099 ~ 34
  • 44. [학술지] D. Mukherjee / 2017 / / Top Catal. / 60 (19-20) : 1673 ~ 19-20
  • 45. [학술지] A. Fujimori / 1980 / / Phys. Stat. Sol. B / 99 (2) : 673 ~ 2
  • 46. [학술지] Z. Wu / 2017 / / Am. Chem. Soc / 139 (28) : 9721 ~ 28
  • 47. [학술지] A. M. Chippindale / 1991 / / J. Solid State Chem / 92 (2) : 526 ~ 2
  • 48. [학술지] K. -W. Chae / 2016 / / Sci. Adv. Mater / 8 : 1 ~