
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-1S, November 2019

290

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10591191S19/2019©BEIESP

DOI: 10.35940/ijitee.A1059.1191S19

Abstract: There are many consensus algorithms that exist in

parallel computing that involve multiple computing units like

virtual machines which make use of available resources and

arrive at a single agreeable state for the combined system. This is

done on the basis of voting which itself branches into several

arrangements like voting, functions of central tendencies,

weighted functions of central tendencies etc. Some applications

that consensus algorithms try to cover are: deciding on

transaction operations (read, write, commit); deciding on node

leaders of a system; maintaining replicas in the state of a

machine (also called a state machine) and creating consistency

between them. Some common algorithms of this type are Proof

of Work algorithm (PoW), the practical Byzantine fault

tolerance algorithm (PBFT), the proof-of-stake algorithm (PoS)

and the delegated proof-of-stake algorithm (DPoS), Paxos

algorithm and the Raft consensus algorithm.

Keywords: Maintaining replicas, Parallel Computers, State

Machines, Virtual Machines.

I. INTRODUCTION

Distributed Computing has been one of our best

approaches to computing solutions for a given problem by

making use of shared resources systems when it comes to

memory, processing power and platforms in general. This

has not only significantly reduced costs and overheads but

also ensured increased fault tolerance when it comes to

highly scalable systems.

To make this concept work, we make use of consensus

algorithms to replicate the state of all involved machines

such that after a certain time or number of steps of

processing, each machine agrees to end its final state based

on a consensus. These consensus algorithms are the basis of

parallel and distributed computing. Consensus algorithms

are designed such that there is a leader node in the network

and by means of an election/consensus either a final state is

agreed upon by the majority of the nodes in the network, or

Revised Manuscript Received on July 22, 2019.
* Correspondence Author

R. Kannadasan, Computer Science and Engineering, VIT University,

Vellore, India. Email: kannadasan.r@vit.ac.in

N.Prabakaran, Computer Science and Engineering, VIT University,

Vellore, India. Email: Prabakaran.n@vit.ac.in

A.Krishnamoorthy, Computer Science and Engineering, VIT University,

Vellore, India. Email: krishnamoorthyarasu@vit.ac.in

K,Naresh, Computer Science and Engineering, VIT University, Vellore,

India. Email: knaresh@vit.ac.in

Saravana Balaji.B, Collge of Engineering and Computer Science,

Lebanese French University,Erbil-Kurdistan, Iraq. Email:

saravanabalaji.b@lfu.edu.krd

A.S,Anakath, Professor and Director, Department of M.C.A, E.G.S.

Pillay Engineering College(Autonomous), Nagapattinam , India.

Email: anakatharasan@gmail.com

no state is agreed on in which case the system can proceed to

send an error message or never reach consensus and deem

our given problem as unsolvable in nature.

In this paper, our goal will be to quickly examine the flaws

of existing consensus algorithms and develop a new and

novel consensus algorithm that we can utilize to cover up for

all the negative aspects of said algorithms.

II. REPLICATED STATES

As mentioned, the purpose of replicated consensus

algorithms is to ensure that there is complete agreement

between the final states of each node such that based on the

voting, the whole connected system as a whole can issue out a

final agreed value. This is done by keeping logs of the state of

each node. Consider a distributed network as follows:

Fig. 1

 Each node in the above network (Node1-Node5) has its

own set of properties and functions based on their

configurations. Based on our use case we are free to conduct

any operation/computation that may require more than one

node in usage. Our goal is that towards the end – the final

output given back to the client is done by making use of a

maximum number of resources in minimum time using

minimum load on one node based on its tolerance (in time

and resource). Each node has its own characteristic log file

and based on operations carried out, these log files are

modified and changed based on the sequence of computing

and result generated. Simply stating- the job of replicated

state machines is to manage consistency in these log files till

the end and ensure that if the consistency is changing, then

the log files have to be adjusted along with their

corresponding operation.

Creating a Novel Consensus Algorithm for

Distributed Computing use Cases

R. Kannadasan, N.Prabakaran, A.Krishnamoorthy, K,Naresh, Saravana Balaji.B, A.S.Anakath,

291

Creating a Novel Consensus Algorithm for Distributed Computing use Cases

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10591191S19/2019©BEIESP

DOI: 10.35940/ijitee.A1059.1191S19

This is done by a series of rollbacks or additional operations

depending on the requirements of our given node files.

Our goal is to briefly look into the advantages and

disadvantages of each of these algorithms and try to create a

novel algorithm of our own that aims to do the following:

 Retain the benefits of the above algorithms

 Get rid of the disadvantage

 Maintain proper replicas of our finite state machine

 Maintain fault tolerance

 Use resources available in a distributed computing

environment as efficiently as possible

 Make the best judgment of setting trade-off between

accuracy, speed and usage of resources.

III. EXISTING WORK AND THEIR CONS

Over the years a lot of consensus algorithms have been

developed for specific use cases and problem statements in

the areas of blockchain, networking, finance, security, cloud

computing and enterprise software. These algorithms are

sufficient when it comes to their defined cases but fail in the

following circumstances

1. Scalability factors

2. Change of use case

3. Change of operations

4. Change of nature of networks

5. Change of nodes and their respective load balancing

capabilities

6. Change of problem types that can usually be solved by

these algorithms

7. Increasingly complex computing architectures

These factors prevent any of the common algorithms to reach

a state of consensus for general use cases. Before we propose

our solution to this generalization issue, let us look at

existing algorithms for consensus and their issues

IV. PROOF OF WORK ALGORITHM

It is used in decentralized ledger networks where all

information related to all nodes are collected and maintained.

Each block/node in the network is recorded and watched over

by a special individual node called a miner. This technology

is used to solve complex mathematical problems that usually

require high resource usage in terms of memory, architecture

and time. This encompasses problem statements like integer

factorization, hashing operations and tour algorithms. This

algorithm has amazing use cases when getting outputs based

on unknown inputs but we will now look at certain flaws in

the algorithm.

Flaw of Proof of work algorithm:

 High node requirement in the network

 Lengthy network

 Increased power consumption can sometimes outweigh

the resource optimization costs

 The process increases the overall sensitivity of the

system

V. PRACTICAL BYZANTINE FAULT TOLERANCE

This algorithm works on the basis of replicated state

machines and solves the Byzantine general's problem. The

Byzantine Fault is one of the more popular classical problems

with distributed computing which features failure of

components, and/or where there is misinformation of the

failure of a component in a network. Because of this fault – a

high-risk server can seem to be working as well as failed to a

failure-detection system, thus presenting different

perspectives of a state to different observers.

The PBFT algorithm starts by assuming that not all nodes

in a distributed network are going to be active and

functioning all the time. Because of this – some scale of

failure is prepared for in advance. The nodes in this

algorithm are arranged in a specific order that ensures that

one of the nodes acts as a leader and the others are kept as

backup nodes. This is done by a round of voting and the value

with the highest number of votes gets elected as the state of

the machine. This algorithm also features increased

communication in the network and prevents any overlooking

in the network as long as there is a majority of functioning

nodes in the network.

Main drawbacks of this algorithm include:

 Communication Gap

 Sybil Attack

VI. PAXOS

Paxos algorithm is one of the most popular algorithms that

is used to achieve consensus in a distributed network of

systems over an asynchronous network. One or more nodes

in a network propose a value and all the nodes in the same

network have the liberty of proposing or agreeing with the

proposed value. Paxos then assigns the node the leader that

gets the maximum votes for the same. This is one of the most

famous algorithms as it has been rigorously proven to be

correct. In order to create replicated state machines in the

form of log files for each node, we need to run Paxos

algorithm repeatedly for all the available nodal zones so that

each center can have a chance to initiate a proposal to submit

as a value. Based on these elections and voting are based and

carried out.

Paxos has 3 main entities:

 Proposers

 Acceptors

 Learners

Error Cases exhibited in Paxos (basic):

 When an acceptor fails

 When a redundant learner fails

 When a Proposer fails

 When multiple proposers conflict

There are some major issues with the Paxos algorithm.

The first being that it is an incredibly complex algorithm

to understand.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-1S, November 2019

292

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10591191S19/2019©BEIESP

DOI: 10.35940/ijitee.A1059.1191S19

Even the recent definitions of the Paxos algorithm’s

functioning is based on single/basic Paxos functioning.

When we start involving multiple Paxos on nodes in a

network, we start observing an additional complexity in

the implementation. Finally, this makes the decomposition

of the problem statement complex and we can observe that

there are in turn much simpler and obvious ways of slicing

our operations to make use of resources in a shared

ecosystem just as efficient.

The second being – Paxos is incredibly difficult to

implement in a practical surrounding. Even the

single-decree Paxos implementation that is usually

theorized have been inconsistent with their data and

environments and their results have not yet been

published. The issue with such a system is that this

algorithm is not suitable for types of statements where our

log files are added and appended to each other if they’re

independent. It would be less costly to add them in a

sequential manner directly without any voting/consensus

instead of wasting computing resources to decide the order

of logfile- operation execution.

Finally, the Paxos architecture utilizes the symmetric

peer-to-peer approach, according to which making unary

decisions becomes extremely convenient and realistic, but

in a practical situation-set; for more complex or serial

decisions it is more efficient to elect a leader and then

initiate voting. These are some of the reasons why even the

classic Paxos algorithm fails in certain use cases and

succeeds in others.

VII. RAFT CONSENSUS

 The biggest issue with the Paxos algorithm was its

increasingly complex architecture and algorithmic

structuring. To break down the algorithm into simpler phases

and increase industrial scalability needs we found the need to

shift to a new algorithm that deals with the drawbacks of

Paxos and also has some additional features of its own. Raft

algorithm enables us to distribute a state machine (log

file-replicas) over a network of nodes and provide a way to

obtain general consensus such that concurrent set of

transactions and logic routes are followed that ultimately

reach an agreeable state. It is important to note that Raft

consensus algorithm isn’t Byzantine Fault-tolerant and

hence elects a leader node and carries out its computation in

a distributed system of networks.

Raft consensus differs from Paxos in the sense such that it

follows a 3-subcomponent method of implementation

1. Leader election

2. Log replication

3. Safety

This algorithm firstly elects a leader in the node of the

network. Depending on the votes obtained a leader is elected

and is given full power over accepting and implementing the

log replication of the network based on the client’s

requirements. This ensures that the leader need not waste

time or energy in consulting other nodes to make

modifications in the log and execution flow as long as it is

connected to the network. The moment a network failure

occurs that causes the leader node to get disconnected from

the network a new election is held to contest a new leader for

the same as a part of this algorithm’s implementation.

Fig. 2

While Raft Protocols solve some issues faced by Paxos, it is

incredibly important to know its limitations as well.

 Raft protocols follow the single leader approach. While

this can help a lot of redundancy test cases pass with a

reduction in processing time, the protocol can fail in a

high-pace request system scenario in a network.

 Raft protocols do not prove to be generally good

algorithms for all consensus problems but only for a very

specific and specialized of problem statements.

 Raft protocols sideline real-life scenarios which face the

highest occurrences of Byzantine failures. This reduces the

application of the algorithm further because of anomalies.

VIII. PROPOSED WORKING CONCEPT

 We have explored and studied existing algorithms for

finding consensus in a distributed network. Each algorithm

has its own set of use cases and works well in highly

specialized environments and problem statements. However,

as we have investigated the flaws of all the above-mentioned

algorithms, it is also evident that none of these algorithms is

useful in a general scenario of Parallel and Distributed

Computing - the biggest reason being the existence of

Byzantine Failure.

 This section will deal with proposing a new concept to

eliminate rate of failure of distribution of resources in a

shared system-environment by considering data points from

numerous simulations of the above algorithms and finding

failure and success test cases, and ensemble the results such

that a neural network is able to identify which set of

combinations of algorithms can achieve a better set of

generalization.

 We can add on to this approach by using Generative

Adversarial Networks (GANs) by keeping the generator as a

set of Long Short-Term Memory networks (LSTMs) and the

discriminator as a set of another LSTMs that are pre-trained

from existing data points. The generator keeps generating

series of combinations (randomly in the beginning) and

keeps validating with the discriminator and based on the

correct result, the complete GAN is retrained dynamically.

Let us look at the diagrammatic approach for the same.

293

Creating a Novel Consensus Algorithm for Distributed Computing use Cases

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10591191S19/2019©BEIESP

DOI: 10.35940/ijitee.A1059.1191S19

Fig. 3

The above is a simple GAN implementation that consists of

our Discriminator and Generator. Let us look at the

architectures of our Discriminator and Generator seperately

Fig. 4. Generator

Fig. 5. Discriminator

Before we dive deep into the algorithm process flow, let us

familiarize ourselves with some terms closely associated with

our neural network.

Neural Network: A neural network is defined as a weighted

directional graph which is used to calculate the cost of

traversal of the path between any number of nodes defined

within the path. We usually use different architectures of

Neural Networks to solve complex problems that cannot be

solved by modern-day computing. This is done leveraging

numerous amounts of data of similar kinds such that our

network (weighted graph) is fed with the same repeatedly

and its' output is measured and compared with respect to the

correct output and the weights of the connections are

constantly updated to best match the final computation as the

result desired.

Long Short-Term Memory networks (LSTMs): LSTMs is

a kind of Artificial Neural Network that is used to process

sequence of data such that they can very accurately work on

predicting and computing results on time-series data. This

makes them very powerful and unlike normal feed-forward

neural architectures, LSTMs have backwards connections as

well. This ensures that memory of the past learning iteration

is retained (short-term memory) and this helps us detect

patterns in a certain set sequence very easily.

General Adversarial Networks (GANs): GAN is an

architecture which consists of two sets of neural networks

that constantly compete with each other on deriving the

correct output. This makes use of a popular concept from

principles of Game theory - which is called a zero-sum game.

This is done by keeping one set of a network as a

discriminator and the other as a generator. The generator is

responsible for using data distribution to find certain patterns

(which is random initially and represents plain-high

dimensional signal noise) and the discriminator validates the

obtained data distribution's pattern with the true data

distribution metrics.

Convolutional neural networks (CNNs): This kind of

network deals with finding patterns in a distributed data set.

This is done by adding a layer of convolution (filter) after

every 'n' number of artificial neural layers of an ANN. This

ensures that the process of gradient descent is applied to the

convolutional layer as well.

Now that we have our literature review of existing concepts

that we require for our algorithm, let us look at the main steps

of the entire process flow.

Step 1: Prepare a dataset for our General Adversarial

Network to train upon.

This is done by simulating the algorithms that we have

discussed above on 'm' a number of distributed computing use

cases, like - PoW, PoS, PBFT, Paxos and Raft. We can

consider the following points for our use case distribution:

 Time elapsed (Total)

 State of Success/Failure (S/F)

 Resource optimization vs. Resource availability

(Resource used/Total resource available)

 Even in resource optimization – Maintain a separate

count of different categories of resources used.

Once our basic metrics are isolated, we proceed to pass the

above algorithms - PoW, PoS, Paxos and Raft consensus

algorithm one by one to make use of our distributed

network of resources (processors, memory units, displays,

etc). We then measure the above metrics and record the

same for 'n' iterations of each algorithm. This can be stored

as a separate CSV file on which our model will train on the

same.

Step 2: Create your own General Adversarial Network

(GAN) to train on the same dataset.

This step involved setting up our machine learning model

by initializing a GAN and setting up its discriminatory and

generator by declaring their innate properties. Our

Generator will be an untrained LSTM network and our

discriminator will be an LSTM network trained on our

dataset that is created in step 1. This process trains our

generator to eventually find patterns in specific

distributions of data and correctly identify faulty outcomes

and change the path of traversal in our distributed systems

architecture.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-1S, November 2019

294

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A10591191S19/2019©BEIESP

DOI: 10.35940/ijitee.A1059.1191S19

Step 3: Dynamically validate your GAN on newer inflows

of data by setting up required pipelines.

We can make the prediction metrics of our GAN much

better by setting up pipelines to dynamically collect data

every time any distributed system utilizes a classical

algorithm for consensus purposes and retrain our network

on the particular set of data points acquired in the process.

We can additionally, set up a greater number of GANs to

train on our data points but with different hyper-parameter

configurations and then ensemble the outputs to reduce

our validation loss even further.

IX. ADVANTAGES OF THE PROPOSED CONCEPT

 Removes uncertainty of Byzantine Faults in distributed

systems because of the ability to map mathematically

complex functions to path traversals in the system

such that all possible scenarios of byzantine fault are

eliminated. This also can be modified such that the

algorithm suggests additions/deletions in the network

of resources to overcome the halt.

 Ability to find the best fitting path of traversal in the

system for all problem statements- Can achieve

generalization in consensus building through the

concept of training on as much variety of data as

possible. Leverages the availability of memory to a

great extent.

 Promises optimal resource usage of our distributed

system.

 Solves the issue of single leader election in situations of

no majority - leverages on all possible nodes in the

network during GAN-training and is able to predict

the best choice for leader election for the same,

considering system failure situations.

X. DISADVANTAGES OF PROPOSED CONCEPT

 This method has high memory requirements for our

GAN storage.

 Our method will require a lot of time to train our

proposed architecture of GAN and depending upon

the number and variety of our data-points this time

will increase. However, training is a very periodic

process that is completely dependent on our usage and

requirements of the consensus algorithm.

XI. CONCLUSION

In this paper, we have witnessed and discussed different

methods of evaluating consensus from a distributed system

by keeping in mind that the state of all nodes should replicate

to same values at the end of one processing iteration. We

have also identified the many flaws that exist in the same

methods - the biggest being the issue of none of the

algorithms having a generalized use case but only very

specific and user specialized use cases.

Hence our main motive has been to solve this problem by

proposing a novel solution using Machine Learning and

General Adversarial networks. We have introspected on the

process flow, advantages and disadvantages of our approach.

In our results, we have concluded that from a theoretical

standpoint our method has two main cons but they're short

term and the advantages greatly outweigh the former due to

the fact that with proper data collection and resource

allocation we can actually solve the problem of

generalization very real when it comes to determining

consensus in a distributed network.

REFERENCES

1. Bruner, I. S. and Tagiuri, R. The perception of people. In Handbook of

Social Psychology, Vol. 2, G. Lindzey, Ed., Addison-Wesley, Reading,

MA, 634–654.1954
2. Bledsoe, W. W. The model method in facial recognition. Tech. rep.

PRI:15, Panoramic research Inc., Palo Alto, CA.1964
3. Ekman, P. Ed., Charles Darwin’s The Expression of the Emotions in Man

and Animals, Third Edition, with Introduction, Afterwords and

Commentaries by Paul Ekman. Harper- Collins/Oxford University Press,

New York, NY/London, U.K.1998
4. Kelly, M. D. Visual identification of people by computer. Tech. rep.

AI-130, Stanford AI Project, Stanford, CA. 1970
5. Kanade, T. Computer recognition of human faces. Birkhauser, Basel,

Switzerland, and Stuttgart, Germany 1973
6. Y. Cheng, C.L. Wang, Z.Y. Li, Y.K. Hou and C.X. Zhao,‖ Multiscale

principal contour direction for varying lighting face

recognition‖,Proceedings of IEEE 2010
7. F. Al-Osaimi·M. Bennamoun · A. Mian,‖ An Expression Deformation

Approach to Non-rigid 3D Face Recognition‖, Springer Science+Business

Media, LLC 2008

AUTHORS PROFILE

R. Kannadasan is an Assistant Professor (Senior) at

School of Computer science and Engg., (SCOPE), VIT

University, Vellore, India. His research activities are

carried out in bio informatics, language translators and

DNA computing.

N.Prabakaran, is an Assistant Professor(Sr), School of

Computer science and Engg., (SCOPE), VIT University,

Vellore, India. His research activities are carried out in

Networks and Distributed computing.

A.Krishnamoorthy is an Assistant Professor (Senior) at

School of Computer science and Engg., (SCOPE), VIT

University, Vellore, India. His research activities are

carried out in VLSI, Embedded system and theory.

K.Naresh, is an Assistant Professor(Sr), School of Computer

science and Engg., (SCOPE), VIT University, Vellore, India.

His research activities are carried out in Networks and

Distributed computing.

Saravana Balaji.B is an Assistant Professor , Collge of

Engineering and Computer Science, Lebanese French

University,Erbil-Kurdistan, Iraq.. His research activities are

carried out in Embedded system ,Cloud computing and

Simulators.

A.S,Anakath, Professor and Director, Department of M.C.A,

E.G.S. Pillay Engineering College(Autonomous),

Nagapattinam , India.. His research activities are carried out

in Operating System, Cloud Computing and Network and

Theoretical computing..

