
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2885

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP
DOI: 10.35940/ijeat.B3837.129219
Journal Website: www.ijeat.org

Abstract: In the Soft Real-Time System scheduling process with
the processor is a critical task. The system schedules the processes
on a processor in a time interval, and hence the processes get
chance to executes on the processor. Priority-driven scheduling
algorithms are sub-categorized into mainly two categories called
Static Priority and Dynamic Priority Scheduler. Critical Analysis
of more static and dynamic priority scheduling algorithms have
been discussed in this paper. This paper has covered the static
priority algorithms like Rate Monotonic (RM) and Shortest Job
First (SJF) and the dynamic priority algorithms like Earliest
Deadline First (EDF) and Least Slack Time First (LST). These all
algorithms have been analyzed with preemptive process set and
this paper has considered all the process set are periodic. This
paper has also proposed a hybrid approach for efficient
scheduling. In a critical analysis, it has been observed that while
scheduling in underload situation dynamic priority algorithms
perform well and even EDF also make sure that all process will
meet their deadline. However, in an overload situation, the
performance of dynamic priority algorithms reduce quickly, and
most of the task will miss its deadline, whereas static priority
scheduling algorithms miss a few deadlines, even it is possible to
schedule all processes in underload situation, whereas in an
overload situation, the static algorithms perform well compared to
the dynamic scheduler. This paper is proposing one Hybrid
algorithm call S_LST which uses the concept of LST and SJF
scheduling algorithm. This algorithm has been applied to the
periodic task set, and observations are registered. We have
observed the Success Ratio (SR) & Effective CPU Utilization
(ECU) and compared all algorithms in the same conditions. It is
noted that instead of using LST and SJF as an independent
algorithm, Hybrid algorithm S_LST performs well in underload
and overload scenario. Practical investigations have been led on a
huge dataset. Data Set consists of the 7000+ process set, and each
process set has one to nine processes and load varies between 0.5
to 5. It has been tried on 500-time unit to approve the rightness
everything being equal.

Keywords: Soft Real-Time System, RTOS, RM, SJF, LST,
EDF, S_LST

I. INTRODUCTION

Real-Time Systems has to complete its work and deliver
its services on a timely basis. It makes sure that its task will

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Jay Teraiya*, Department of Computer Engineering, Marwadi

University, Rajkot, India. Email: jay.teraiya@gamil.com
Apurva Shah, Department of Computer Science and Engineering The

Maharaja Sayajirao University of Baroda, Baroda, India. Email:
apurva.shah-cse@msubaroda.ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

be completed before its deadline. Example of a Real-Time
system is vehicle control, flight control, healthcare
equipment, and many more. Typical PC run nonreal-time
applications such as a browser, editor, different user
applications. When the real-time system works correctly, and
well, they make us forget their existence [1].

The real-time system is sub-categorized into mainly two
types: hard and soft. There are many definitions of hard and
soft real-time systems. Real-Time system is considered as
Hard if the process fails to meet its deadline, then it will be a
fatal fault. In Hard Real-Time, if the process missed its
deadline, then result produced by the job after the deadline
may have disastrous consequences. A few examples of Hard
Real-Time Systems are Metro Train and its signal system,
Missile technology, Flight control system. The real-time
system is considered as Soft if the late completion of the
process is undesirable. However, a few misses of soft
deadlines do no serious harm; only the system’s performance
becomes poor. A few examples of Soft Real-Time systems
include ATM System, Mobile application and telephone
switches [7].

The real-time system has three kinds of task model call
Periodic, Aperiodic and Sporadic tasks. In the periodic task,
each task generated at regular time intervals. The Real-Time
system is invariably required to respond to external events
and to respond; it executes aperiodic or sporadic tasks whose
release times are not known to the system in advance. We call
the task is aperiodic if the process in it have soft deadlines.
Each unit of work is scheduled and executed by the system as
a process. Each process has a different characteristic like
release time, deadline, period and execution time. The release
time of a process is the instant of time at which the job
become available for execution. The process can be
scheduled and executed at any time after its release. The
deadline for a process is the instant of time by which its
execution needs to be completed. The deadline for a process
sometimes called absolute deadline, which is equal to its
release time plus its relative deadline. The execution time of
any process is considered as the unit amount of time required
for the process to execute it on the processor. If the process is
periodic, then the period of the process indicates the
occurrence interval of the given process. In RTOS, selecting
the scheduling algorithm is a critical task, and it will be
decided based on the characteristics of the RTOS and the
process type [2]. The scheduler can be divided into two
categories, static and dynamic, which depends on the priority
they follow in selecting the
process for execution.

Hybrid Scheduler (S_LST) for Soft Real-Time
System based on Static and Dynamic

Algorithm

Jay Teraiya, Apurva Shah

http://www.ijeat.org/
mailto:jay.teraiya@gamil.com
mailto:apurva.shah-cse@msubaroda.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3837.129219&domain=www.ijeat.org

Hybrid Scheduler (S_LST) for Soft Real-Time System based on Static and Dynamic Algorithm

2886

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP
DOI: 10.35940/ijeat.B3837.129219
Journal Website: www.ijeat.org

The static algorithm uses a unique priority to each process
throughout the scheduling. Rate Monotonic (RM) and
Deadline Monotonic (DM) are an example of static priority
algorithms. Dynamic algorithm priority changes during the
scheduling process. Earliest Deadline First (EDF) and Least
Slack Time First (LST) are an example of dynamic priority
algorithms [10][11].

In this paper, we have compared all dominant dynamic and
static scheduling algorithms and did their critical analysis.
All algorithm has been compared based on Success Ratio
(SR) and Effective CPU Utilization (ECU) parameters. This
paper also proposed an effective scheduling algorithm call
S_LST, which is using characteristics of LST and SJF. The
new algorithm also compared with the rest of all algorithms
based on SR and ECU parameters. This paper explains the
Static and Dynamic Scheduling algorithm in section II. Their
critical analysis based on SR and ECU has been described in
section III, and a new efficient algorithm call S_LST has been
proposed in section IV, and performance of a new algorithm
has been compared and discussed in section V, and paper is
ended with a brief conclusion in section VI.

II. THE STATIC AND DYNAMIC SCHEDULING

ALGORITHMS

Priority-driven scheduling algorithms are online
schedulers that schedule the process according to some
priority. It does not pre-decide the process; instead of that, it
assigns priorities to process when it is ready to execute. The
scheduling algorithm will be executed whenever a new
process is released, or currently, running process completes
its execution. Priority-driven schedulers categorize based on
how priority assigned to each process. Priority-driven
algorithms are classified in to two categories: Static Priority
and Dynamic Priority. A Static Priority algorithm assigns the
same priority to all the periodic processes, and it will remain
fixed relative to other processes. Whereas dynamic-priority
algorithm changes the priority of the process based on the
new process arrives or currently running process completes
[12][22].

A. Static Scheduling Algorithms

The Rate Monotonic (RM) and the Shortest Job First (SJF)
are well known static priority algorithms. The RM assigns the
priority to the process based on their period (the frequency of
the task when it occurs). The Rate of the process is already
known in RTOS for the periodic task. The rate of a process is
the inverse of its period, so higher the rate, the priority of the
process will be high [6][13][14]. The Shortest Job First (SJF)
assigns the priority to the process based on their required
execution time. The required execution time of the process is
also known in RTOS and process with the shortest execution
time will have the highest priority in SJF [13]. By looking at
the approach of both algorithms, its ultimate aim is to gain
maximum profit or try to meet the maximum deadline of the
given processes.

B. Dynamic Scheduling Algorithms

The Earliest Deadline First (EDF) and the Least Slack
Time First (LST) are well known dynamic priority
algorithms. The EDF assigns the priority to the process based
on the absolute deadline. The absolute deadline for each

process is already known in RTOS, and the process which has
the smallest absolute deadline will consider as highest
priority process [8][14]. The LST is another well-known
dynamic priority algorithm, and it assigns priority based on
the slack time of the given process. The slack value of the
process is equal to absolute deadline minus given time t
minus remaining execution time x (slack=d-t-x). The
algorithm checks the slacks of all the ready process each time
a new process is released, or the existing process completes.
The process with the smallest slack value will have the
highest priority [9][15][16][17]. By looking at the approach
of both algorithms, its ultimate aim is to meet the deadline of
the given process.

For any set of periodic processes, we can verify its
stimulability is possible or not using its occurrence period(T),
its execution time(C), and its deadline(D). This ratio is

called the utilization factor of the task set as shown in
equation 1.

 (1)

is called the total processor utilization factor and

represents the fraction of processor time used by the periodic
task set. If >1 no feasible schedule exists for the task set

with an algorithm, and it is overload condition.

III. CRITICAL ANALYSIS OF STATIC AND

DYNAMIC SCHEDULING ALGORITHM

A. System Consideration and Task Model

In Soft Real Time System, system is already aware with
task deadline, its period and the other required data to
compute the required time by the task when task is dispatch.
The process set is considered pre-emptive. This paper has
believed that the system is not having a resource clash
problem. Each task in soft real-time systems has a positive
value and ultimate goal is to gain maximum value. If a
process succeeds, then the system considers its value. If a
process fails, then the system gets less benefit from it [18]
[19]. In this paper, we have implemented Dynamic and Static
scheduling algorithms that apply to the soft real-time system.
The value of the task has been considered the same as its
computation time required [20].

B. Experimental Environment and Evaluating
Parameters

1) Success Ratio (SR):

Success Ratio with real-time systems defined as the ratio of a
set of the process which meets their deadline and a total
number of process. Success Ration determined with the
following equation 2 [21].

 (2)

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2887

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP
DOI: 10.35940/ijeat.B3837.129219
Journal Website: www.ijeat.org

2) Effective CPU Utilization (ECU):

Effective CPU Utilization defined as how much CPU time
has been utilizing for the processes which can meet their
deadline. ECU determined with the following equation 3
[21].

 (3)

Where,
• V represents process value and,
Process Value = time required to complete the process if the
process meets its deadline.
Process Value = 0 if the process does not meet the deadline.
• R is a set of processes, which are scheduled successfully,
i.e., completed within their deadline.
• T is the total time of scheduling.

C. Analysis and Observation

RM, SJF, EDF, and LST algorithms are implemented and
evaluated with SR and ECU parameters (explained in section
3), and results have been observed. Observation with these
results indicates that ECU values persist nearly the same for
Dynamic and Static algorithms, but SR values are not 100%
with the Static scheduling algorithms. When U_p≤1, it

indicates that scheduling of a given task set is possible, but
Static scheduling algorithms are failing to schedule all
processes, whereas Dynamic scheduling algorithm can
schedule this process set. Dynamic scheduling algorithms
give optimum results in underload scenario, and it is
advisable to use the Dynamic schedulers with underload
conditions. In overload situation when U_p>1, observation
indicates that Dynamic algorithms performance reduce
quickly whereas Static algorithms like RM and SJF are still
able to meet a few of their deadline for a given process set.
This observation can conclude that in underload EDF and
LST give optimal results whereas in overload RM and SJF
performed well. Fig. 1 and Fig. 2 provides a graphical
representation of results.
The Static and Dynamic algorithms are evaluated here for
Soft – RTOS and considering it for a single processor, and
pre-emptive process sets and all process set is periodic. All
algorithms are evaluated in a similar environment and results
have been observed and equated. EDF and LST are dynamic
algorithms, and they do well in underload scenario and
schedule all processes in a given process set. LST and SJF are
static algorithms, and they do well in an overload scenario
and try to schedule the maximum process in a given process
set. The ideal algorithm can be designed, which uses the
features of Dynamic and Static algorithm, and it performs
well in underload as well as overload scenario [3][4][5].

Fig. 1 Load Vs. ECU%

Fig. 2 Load Vs. SR%

IV. THE HYBRID APPROACH FOR EFFICIENT

SCHEDULING – S_LST ALGORITHM

S_LST algorithm uses the characteristics of LST and SJF. In
underload, situation task priority will be given based on slack
time, and in an overload situation, task priority will be
assigned based on the shortest execution time. We are
considering that the execution time of the task, its arrival
time, its period and total CPU load is available with Soft
Real-Time System. The scheduling algorithm executes when
a currently running task completes or a new task arrives. The
algorithm has been described as follows.

S_LST Algorithm for Scheduling

Input: Process Set

Output: MIProcess

1: if (Underload Scenario)

2: for each process in process set

3: Calculate Slack time for each Process
in Process Set

4: Select MIProcess with lowest slack
time

5: end for

6: else

7: for each process in process set

8: Calculate Shortest Execution Time for
each process

9: Select MIProcess with lowest
Execution time

10: end for

11: end if

12: return MIProcess

As shown in Algorithm, when scheduling algorithm invokes;
first it observed the CPU load, based on the current process
set and available processes are ready for scheduling.

http://www.ijeat.org/

Hybrid Scheduler (S_LST) for Soft Real-Time System based on Static and Dynamic Algorithm

2888

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP
DOI: 10.35940/ijeat.B3837.129219
Journal Website: www.ijeat.org

If it will assign the task priority based on slack time

(Dynamic scheduling algorithm) and if it will assign

the task priority based on shortest execution time (Static
Scheduling algorithm). The static scheduler aim is to gain
maximum profit from the given process set. So, in overload
situation where dynamic scheduler performs poorly, SJF
algorithm gets more processes meets their deadline.

V. S_LST ALGORITHM RESULTS AND

DISCUSSION

Table 1 represents the results of LST, SJF and the S_LST
algorithm on the simulator. To evaluate S_LST, we are using
a similar environment which we have used to evaluate all
Static and Dynamic priority algorithm as per section 3. Table
1 first eleven rows represent the scenario where task set
contains 1 to 9 task and Load is less than 1 or equal to 1
(). Results show that S_LST performs equally well in
underload scenarios like LST algorithm in terms of ECU and
SR parameter. S_LST uses slack time value of task to assign
dynamic priority in underload situation.

Table 1 rest of rows represents the scenario where process
set contains 1 to 9 process and Load is greater than 1
(). Results show a waste difference in ECU and SR
values compare to a simple LST algorithm. When Load is
greater than 1, it means that task set is not schedulable, and
most of the process misses their deadline with LST
algorithm. Table 1 observations reflect that in slightly
overload situations LST performance degrades very poorly,
whereas SJF able to meet the deadline for few of their process
sets. It means in overload situation, SJF gives better
performance than LST. That is why S_LST uses static
priority in an overload situation. Fig. 3 and Fig. 4 provides a
graphical representation of Table 1.

Fig. 3 Load Vs. ECU%

Fig. 2 Load Vs. SR%

Table- I: Comparison of LST, SJF and S_LST
 ECU SR

Load LST SJF S_LST LST SJF S_LST

0.5 49.49 49.49 49.49 100.00 100.00 100.00

0.55 54.40 54.31 54.40 100.00 100.00 100.00

0.6 59.39 59.39 59.39 100.00 100.00 100.00

0.65 64.35 64.35 64.35 100.00 100.00 100.00

0.7 69.35 69.35 69.35 100.00 100.00 100.00

0.75 74.31 74.31 74.31 100.00 100.00 100.00

0.8 79.22 79.22 79.22 100.00 100.00 100.00

0.85 84.16 84.15 84.16 100.00 99.99 100.00

0.9 89.16 89.00 89.16 100.00 99.84 100.00

0.95 94.17 93.89 94.17 99.99 99.78 99.99

1 99.10 96.74 99.10 100.00 98.74 100.00

1.05 16.09 56.63 56.63 15.84 73.49 73.49

1.1 8.33 63.60 63.60 7.90 75.98 75.98

1.15 5.58 62.66 62.66 5.06 73.66 73.66

1.2 4.21 70.08 70.08 3.67 73.06 73.06

1.25 3.56 73.20 73.20 3.06 77.47 77.47

1.3 3.09 72.24 72.24 2.53 75.34 75.34

1.35 2.63 70.99 70.99 2.09 71.55 71.55

1.4 2.20 76.57 76.57 1.71 73.80 73.80

1.45 2.01 74.45 74.45 1.52 68.76 68.76

1.5 1.83 80.07 80.07 1.33 69.96 69.96

1.6 1.77 77.26 77.26 1.29 67.20 67.20

1.7 1.58 79.16 79.16 1.07 64.60 64.60

1.8 1.45 77.28 77.28 0.95 63.04 63.04

1.9 1.31 77.53 77.53 0.85 62.21 62.21

2 1.19 78.10 78.10 0.76 61.00 61.00

2.25 1.13 76.95 76.95 0.65 55.91 55.91

2.5 0.98 74.97 74.97 0.54 49.92 49.92

2.75 0.91 74.42 74.42 0.47 46.83 46.83

3 0.86 77.23 77.23 0.40 41.67 41.67

3.5 0.75 73.37 73.37 0.33 36.76 36.76

4 0.73 79.57 79.57 0.27 34.09 34.09

4.5 0.71 71.58 71.58 0.24 27.74 27.74

5 0.66 78.22 78.22 0.20 25.71 25.71

VI. CONCLUSION

The Static Algorithms (RM and SJF) and Dynamic
Algorithms (EDF and LST) are implemented for scheduling
of soft real-time system with a single processor and
pre-emptive task sets and done a critical analysis of these
algorithms with ECU and SR parameter in this paper. These
algorithms are simulated with periodic task sets; results are
obtained and compared. Observation says that dynamic
algorithms perform well in underload situations and gives a
guarantee to meet all the deadlines of a given process set. In
overload (Load is > 1) situation, dynamic algorithms
performance degrades very poorly. So, in underload,
dynamic algorithms are advisable but not with an overload
situation.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2889

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP
DOI: 10.35940/ijeat.B3837.129219
Journal Website: www.ijeat.org

Static algorithms miss few process deadlines even in
underload situations. It has been observed that with the
specific process set, even it is possible that all processes can
meet their deadline, but static algorithms are failed to
schedule it. So, in underload, static schedulers are not
advisable, but in overload, they perform well compared to
dynamic algorithms. Based on this observation we have
proposed a hybrid approach for efficient scheduling in Soft
Real-Time system call S_LST. S_LST algorithm assigns the
static priority in overload situations will perform better in all
situations compare to a single approach. Developing a
scheduling algorithm using swarm (ACO) has been done for
the Soft Real-Time system [21]. There is still multiple
research possibility where we can use swarm intelligence
techniques like Gravitational Search Algorithm (GSA) or
Particle Swarm Optimization (PSO) and can design an
efficient scheduling algorithm which can perform well in
underload and overload situation.

REFERENCES

1. El Ghor, H., Hage, J., Hamadeh, N., & Chehade, R. H. (2018).
Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant
Autonomous Systems. Scalable Computing: Practice and Experience,
19(4), 387-400.

2. A. Magdich, Y. Hadj Kacem, M. Kerboeuf, A. Mahfoudhi, and M.
Abid, “A design pattern-based approach for automatic choice of
semi-partitioned and global scheduling algorithms,” Inf. Softw.
Technol., vol. 97, no. November 2017, pp. 83–98, 2018.

3. J. Teraiya and A. Shah, “Comparative Study of LST and SJF
Scheduling Algorithm in Soft Real-Time System with its
Implementation and Analysis,” 2018 Int. Conf. Adv. Comput.

Commun. Informatics, ICACCI 2018, pp. 706–711, 2018.
4. J. Teraiya, A. Shah, and E. Foundation, “Analysis of Dynamic and

Static Scheduling Algorithms in Soft Real-Time System with its
Implementation,” Soft-Computing: Theories and Applications
(SoCTA - 2018) Jalandhar, India 21-23 December 2018.

5. Konar, D., Bhattacharyya, S., Sharma, K., Sharma, S., & Pradhan, S. R.
(2017). An improved Hybrid Quantum-Inspired Genetic Algorithm
(HQIGA) for scheduling of real-time task in multiprocessor system.
Applied Soft Computing, 53, 296-307.

6. Feld, T., Biondi, A., Davis, R. I., Buttazzo, G., & Slomka, F. (2018). A
survey of schedulability analysis techniques for rate-dependent tasks.
Journal of Systems and Software, 138, 100-107.

7. Laalaoui, Y., & Bouguila, N. (2014). Pre-run-time scheduling in
real-time systems: Current researches and artificial intelligence
perspectives. Expert Systems with Applications, 41(5), 2196-2210.

8. Yang, K., & Anderson, J. H. (2015, August). On the soft real-time
optimality of global EDF on multiprocessors: From identical to
uniform heterogeneous. In 2015 IEEE 21st International Conference
on Embedded and Real-Time Computing Systems and Applications
(pp. 1-10). IEEE.

9. Benhai, Z., Yuan, Y., Hongyan, M., Dapeng, Y., & Libo, X. (2016,
May). Research on optimal ELSF real-time scheduling algorithm for
CPS. In 2016 Chinese Control and Decision Conference (CCDC) (pp.
6867-6871). IEEE.

10. A. Mohammadi and S. G. Akl, “Scheduling Algorithms for Real-Time
Systems”, in School of Computing, Queen’s University, Kingston,
Ontario, 2005.

11. Thakor, D., & Shah, A. (2011, December). “D_EDF: An efficient
scheduling algorithm for real-time multiprocessor system”, in

Information and Communication Technologies (WICT), Mumbai,
India, pp. 1044-1049, 2011.

12. D. G. Harkut, “Comparison of Different Task Scheduling Algorithms

in RTOS : A Survey,” vol. 4, no. 7, pp. 1236–1240, 2014
13. Li, W., Kavi, K., &Akl, R. “A non-preemptive scheduling algorithm

for soft real-time systems”, in Computers & Electrical Engineering,

Vol. 33(1), pp. 12-29, 2007.
14. Buttazzo, G. C. “Rate monotonic vs. EDF: judgment day”, in

Real-Time Systems, Vol. 29(1), pp. 5-26, 2005.
15. M. Patel and B. Oza, “An Improved LLF_ DM Scheduling Algorithm

for Periodic Tasks by Reducing Context Switches,” in International

Journal of Advance Engineering and Research, vol. 2, pp. 248–254,
2015.

16. Belagali, R., Kulkarni, S., Hegde, V., & Mishra, G. “Implementation
and validation of dynamic scheduler based on LST on Free RTOS”, in

Electrical, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), Mysore, India, pp. 325-330, 2016,
December.

17. Chen, G., & Xie, W. “On a laxity-based real-time scheduling policy for
fixed-priority tasks and its non-utilization bound”, in Information

Science and Technology (ICIST), 2011,Tebessa, Algeria, pp. 7-10,
2011.

18. Locke, C. D. “Best-effort decision making for real-time scheduling”

(Ph. D Thesis), Computer Science Department, CMU, 1986.
19. Koren, G., & Shasha, D. “D_over: An Optimal On-Line Scheduling

Algorithm for Overloaded Uniprocessor Real-Time Systems” in SIAM
Journal on Computing, Vol. 24(2), pp. 318-339, 1995.

20. A Shah, “Adaptive scheduling algorithm for real-time distributed
systems”, in Biologically-Inspired Techniques for Knowledge
Discovery and Data Mining,pp. 236-248, 2014.

21. J. Teraiya, A. Shah, & K. Kotecha, “ACO Based Scheduling Method
for Soft RTOS with Simulation and Mathematical Proofs” in

International Journal of Innovative Technology and Exploring
Engineering, Vol. 8, Issue. 12 pp. 4736-4740, 2019.

22. D. G. Harkut, “Comparison of Different Task Scheduling Algorithms
in RTOS : A Survey,” vol. 4, no. 7, pp. 1236–1240, 2014.

AUTHORS PROFILE

Jay Teraiya, has completed Bachelor of
Engineering from GCET – Vallabh
Vidyanagar under S. P. University. He has also
completed his M. S. in Software Engineering
from BITS Pillani. He is pursuing in Ph. D
from the M. S. University of Baroda under the
guidance of Dr. Apurva Shah.

Dr. Apurva Shah, Associate Professor and
Head of Department (Computer Science and
Engineering) in Faculty of Technology, the M.
S. University of Baroda Gujarat. He is also
director of Computer Center in the University.
His area of interest are Real Time System,
Artificial intelligence and distributed
computing. He has completed his Ph. D. from
S. P. University Vallabh Vidyanagar.

http://www.ijeat.org/

