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ABSTRACT 

This study presents the problem of robust stability analysis for the Takagi-Sugeno 

(T-S) fuzzy systems with mixed time-varying delays. In the proposed T-S fuzzy system, 

there occurred discrete and distributed time delays that are taken in account as mixed 

time varying delays. Based on the refined Lyapunov-Krasovskii functional which 

contains the information of the upper and lower bounds of time-varying delays, robust 

stability conditions of delay-dependent T-S fuzzy system are derived in terms of the 

linear matrix inequalities. The obtained delay-dependent conditions ensure the robustly 

asymptotically stability of the proposed delayed T-S fuzzy systems. Finally, numerical 

examples are given to show the superiority of the derived sufficient conditions. 
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1. INTRODUCTION 

The dynamical analysis of the nonlinear systems has received more attention in the research 

community due to its various studies for the steady states of the systems such as stability, 

bifurcation, periodic and chaotic. These analyses are helpful to understanding the dynamical 
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nature of the proposed dynamical models. As we know that, the dynamical analysis of nonlinear 

systems is difficult for analyzing the stability nature. In this situation, the T-S fuzzy approach 

can be applied to express the nonlinear systems as a convex combination of the local linear 

systems blended by IF-THEN membership functions. Therefore, a significant results have been 

reported in the existing research results (see [1], [2], [3], [4] ). As an example, the authors in 

[5, 6, 7, 8], have investigated the stability and stabilization issue for T-S fuzzy model of the 

proposed systems based on suitable Lyapunov-functional and expressed in terms of matrix 

inequalities. 

On the other hand, time-delay is an unavoidable factor in the dynamical systems. It has wide 

applications in the field of chemical reactor systems, aircraft systems, vehicle suspension 

systems, neural networks, and economic-modelled control systems. This delay factor plays an 

import role in the dynamical nature i.e., this factor can be lead some poor performance or 

instability of the whole nature. Therefore, the investigation of the time-delay in the dynamical 

systems has received importance from the researchers in the literature [9, 10, 11]. In the general, 

two kinds of sufficient conditions have been derived by the researchers such as delay-dependent 

condition and delay-independent condition. The delay-dependent condition is considered less 

conservative than the independent condition when the size of delay is small, therefore, 

researchers have paid attention on delay-dependent stability analysis for the dynamical systems 

[12, 13, 14, 15]. 

Moreover, when modelling a dynamical system, we cannot avoided some modelling error 

in the designing of the systems parameters, which is called as parameter uncertainty. This 

uncertainty will make some poor performances in the stability of the systems. Hence, the robust 

stability analysis became an important research topic among the researchers [16, 17, 18]. As an 

example, in [16], the problem of robust stability analysis has been investigated for fractional 

order neutral-type nonlinear systems with actuator saturation. Moreover, the authors in [17] the 

cases of matrix parameters and delays uncertainties have taken in the stability analysis of linear 

systems with distributed delays and the robust stability conditions have been obtained based on 

suitable Lyapunov-functional. 

To the best of the authors’ knowledge, very few results are available on the delay-dependent 

stability analysis for T-S fuzzy systems with mixed time-varying delays and parameter 

uncertainties. This is the motivation of this study. According to the above discussion, in this 

work, delay-dependent robust stability analyses are addressed. The mixed time-varying delay 

and parameter uncertainties are taken in the proposed T-S fuzzy systems. Based on this, a 

suitable LKF is constructed which includes the information of the time-delays and their upper 

bounds. Then, the delay-dependent robust stability conditions are derived in the form of LMIs. 

Finally, the derived conditions are validated with suitable numerical examples. From the 

simulation results, we can confirm that the effectiveness and superiority of the derived results. 

Notation: Throughout this manuscript, the n-dimensional Euclidean space is denoted by 
n  and the set of all n × n real matrices are denoted by nxn . The notation Z ≥ W 

(respectively, Z > W) means that, positive semi-definite (respectively, positive definite) where 

Z and W are symmetric matrices. The notation * always denotes the symmetric block in one 

symmetric matrix. 

2. METHODS 

Consider the t-s fuzzy model of nonlinear systems with mixed time-varying delays as below: 

Plant rule i: If γ1(t) is μ1
i and …and γl(t) is μl

i Then 
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1 1 2 2 3 3

( )

( ) ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( )

t

i i i i i i

t t

x t A A t x t A A t x t t A A t x d


  
−

= + + + − + +       (1) 

2( ) ( ), [ max{ , },0], 1,2,...... .x t t t r i r =   − =  

Where x(t)=[x1(t),x2(t),…,xn(t)] ∈  n  denotes the state vector. 𝝓(⋅) ∈

ℂ([−𝒎𝒂𝒙{𝝉𝟐, 𝒓}, 𝟎], n ) denotes the initial function. A1i, A2i, A3i ∈  nxn  are known 

matrices. 
j

i  is the fuzzy set.r is the number of IF-THEN rules, γ(t)=[γ1(t), γ2(t),…, γl(t)] are 

the premise variables. ( )t  denotes the time-varying delay satisfies 

1 20 ( ) , ( ) 1,t t        
and the distributed delay r(t) satisfies the following condition 

0 ≤ r(t)≤r where μ 1 2, 
 and r are constants. The parameter uncertainties 1 2( ), ( )i iA t A t 

 and 

3 ( )iA t
are of the form  

   1 2 3 1 2 3( ) ( ) ( ) ( ) ,i i i i i i i iA t A t A t B C t D D D   =
                     (2)   

where 1 2 3, , ,i i i iB D D D
 are known real constants matrices 

( )iC t
known real constant matrices 

with Lebesgure measurable elements which satisfies Ci
T(t)Ci(t)≤I, ∀ t ∈  . Where I is the 

appropriate dimension identity matrix. 

Then, the overall t-s fuzzy model with time varying delay (1) can be deduced as follows 

( ) ( ) ( )1 1 2 2 3 3

1 ( )

( ) ( ( )) ( ) ( ) ( ) ( ( )) ( ) ( )

tr

i i i i i i i

i t r t

x t t A A t x t A A t x t t A A t x d    
= −

  
= +  + + − + + 

  
 

     
                                                                                                                                 

(3)  

where  

1

1

( ( ))
( ( )) , ( ( )) ( ( ))

( ( ))

l
i ii

i j j jr

j
i

i

t
t t t

t

 
     

  =

=

= =


and μj
i(γj(t)) representing the 

membership value of γj(t) in μj
i. Then, it is easy to see that for all t the basic properties 

of T-S fuzzy rules 1

( ( )) 0, ( ( )) 1.
r

i i

i

t t   
=

 =
  

The following lemmas are essential to get the main results and are stated below 

Lemma 2.1 (Schur complement) given constant matrices 1 2 3, ,  
with appropriate 

dimensions, where 1 1

T = 
 
and 2 2 0T =  

, the inequality  

1

1 3 2 3 0T − +   
 

holds, if and only if 
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2 31 3

12

0, 0
**

T

or
−     

    
−   

 
Lemma 2.2. [15] For any constant matrix Q = QT > 0 and a scalar r > 0 such that the following 

integrations are well defined, then 

1
( ) ( ) ( ) ( ) ,

T
r t t

T

t r t r t r

x Qx d x d Q x d
r

      
− − −

   
−  −    

   
  

 

0 0 0

2

2
( ) ( ) ( ) ( ) .

T
t t t

T

r t r t r t

x Qx d d x d d Q x d d
r

  

         
− + − + − +

   
−  − − −   

   
     

 
Lemma 2.3.[18] Let U, V(t),J and K be real matrices of appropriate dimensions with K 

satisfying K = KT, then 

K+UV(t)J+JT VT (t)UT <0,    VT (t) V(t)     I
 , 

if and only if there exist a scalar 0   such that       

1 0.T TK UU J J −+ + 
 

We first investigate the stability analysis of T-S fuzzy system without parameter 

uncertainties (i.e., ΔA1i(t)  =  ΔA2i(t)  =  ΔA3i(t)  =  0). The system can be reduced the form 

as 

1 2 3

1 ( )

( ) ( ( )) ( ) ( ( )) ( )

tr

i i i i

i t r t

x t t A x t A x t t A x d    
= −

  
= + − + 

  
 

     (4) 

By constructing an appropriate LKF, the delay-dependent stability condition is summarized 

in the following theorem. 

Theorem 3.1. For given scalars τ1 ≥ 0, τ2 > 0, r > 0, and μ the T-S fuzzy system described by 

(4) is asymptotically stable, if there exist positive-definite symmetric matrices 

P > 0, Qi > 0(i = 1, …, 5), Ri > 0(i = 1, …, 5) and appropriate dimension matrices M1,  M2 

such that the following LMI holds 

℧ =

[
 
 
 
 
 
 
 
 
℧1,1 ℧1,2 ℧1,3 ℧1,4 ℧1,5 ℧1,6 ℧1,7 ℧1,8

∗ ℧2,2 ℧2,3 ℧2,4 ℧2,5 ℧2,6 ℧2,7 ℧2,8

∗ ∗ ℧3,3 ℧3,4 ℧3,5 ℧3,6 ℧3,7 ℧3,8

∗ ∗ ∗ ℧4,4 ℧4,5 ℧4,6 ℧4,7 ℧4,8

∗ ∗ ∗ ∗ ℧5,5 ℧5,6 ℧5,7 ℧5,8

∗ ∗ ∗ ∗ ∗ ℧6,6 ℧6,7 ℧6,8

∗ ∗ ∗ ∗ ∗ ∗ ℧7,7 ℧7,8

∗ ∗ ∗ ∗ ∗ ∗ ∗ ℧8,8]
 
 
 
 
 
 
 
 

< 0 (5) 

 where  

 ℧1,1 =  𝑄1 + 𝑄2 + 𝑄3 + 𝜏1
2𝑅1 + 𝜏2

2𝑅2 + 𝑟2𝑅3 − 2𝑅4 − 2𝑅5 + 2𝑀1𝐴1𝑖, 
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  ℧1,4 = 𝑀1𝐴2𝑖,    ℧1,5 = 𝑃 − 𝑀1 + 𝐴1𝑖
𝑇 𝑀2

𝑇 ,    ℧1,6 = 𝑀1𝐴3𝑖,    ℧1,7 =
2

𝜏1
𝑅4,    ℧1,8 =

2

𝜏2
𝑅5, 

              ℧2,2 = −𝑄2 + 𝑄5,    ℧3,3 = −𝑄1 − 𝑄4,    ℧4,4 = −(1 − 𝜇)𝑄3 − (1 − 𝜇)𝑄5 + (1 −
𝜇)𝑄4, 

 ℧4,5 = 𝐴2𝑖
𝑇 𝑀2

𝑇 ,    ℧5,5 =
1

2
𝜏1

2𝑅4 +
1

2
𝜏2

2𝑅5 − 2𝑀2,    ℧5,6 = 𝑀2𝐴2𝑖 ,    ℧6,6 = −𝑅3, 

 ℧7,7 = −𝑅1 −
2

𝜏1
2 𝑅4,    ℧8,8 = −𝑅2 −

2

𝜏2
2 𝑅5 

 and the terms which have not been stated here are zero.  

Proof: 

To derive the asymptotic stability conditions for delayed T-S fuzzy system(4), we consider the 

following Lyapunov-Krasovskii functional (LKF) as:  

𝑉(𝑥𝑡) = ∑

4

𝑖=1

𝑉𝑖(𝑥𝑡) 

where  

 𝑉1(𝑥𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡), 

𝑉2(𝑥𝑡) = ∫
𝑡

𝑡−𝜏2
𝑥𝑇(𝛼)𝑄1𝑥(𝛼)𝑑𝛼 + ∫

𝑡

𝑡−𝜏1
𝑥𝑇(𝛼)𝑄2𝑥(𝛼)𝑑𝛼 + ∫

𝑡

𝑡−𝜏(𝑡)
𝑥𝑇(𝛼)𝑄3𝑥(𝛼)𝑑𝛼  

                 +∫
𝑡−𝜏(𝑡)

𝑡−𝜏2
𝑥𝑇(𝛼)𝑄4𝑥(𝛼)𝑑𝛼 + ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)
𝑥𝑇(𝛼)𝑄5𝑥(𝛼)𝑑𝛼, 

 𝑉3(𝑥𝑡) = 𝜏1 ∫
0

−𝜏1
∫

𝑡

𝑡+𝜃
𝑥𝑇(𝛼)𝑅1𝑥(𝛼)𝑑𝛼𝑑𝜃 + 𝜏2 ∫

0

−𝜏2
∫

𝑡

𝑡+𝜃
𝑥𝑇(𝛼)𝑅2𝑥(𝛼)𝑑𝛼𝑑𝜃 

                   +  𝑟 ∫
0

−𝑟
∫

𝑡

𝑡+𝜃
𝑥𝑇(𝛼)𝑅3𝑥(𝛼)𝑑𝛼𝑑𝜃 

 𝑉4(𝑥𝑡) = ∫
0

−𝜏1
∫

0

𝜃
∫

𝑡

𝑡+𝛽
�̇�𝑇(𝛼)𝑅4�̇�(𝛼)𝑑𝛼𝑑𝛽𝑑𝜃 + ∫

0

−𝜏2
∫

0

𝜃
∫

𝑡

𝑡+𝛽
�̇�𝑇(𝛼)𝑅5�̇�(𝛼)𝑑𝛼𝑑𝛽𝑑𝜃 

Then, to obtain the asymptotic stability taking the time derivative of the LKF 𝑉(𝑥𝑡) along 

the trajectory of the system (4). �̇�(𝑥𝑡) can be evaluated by using the above mentioned terms  

 �̇�1(𝑥𝑡) =   2𝑥𝑇(𝑡)𝑃�̇�(𝑡), (6) 

 �̇�2(𝑥𝑡) ≤   𝑥𝑇(𝑡)(𝑄1 + 𝑄2 + 𝑄3)𝑥(𝑡) − 𝑥𝑇(𝑡 − 𝜏2)(𝑄1 + 𝑄4)𝑥(𝑡 − 𝜏2) 

   +𝑥𝑇(𝑡 − 𝜏1)(𝑄5 − 𝑄2)𝑥(𝑡 − 𝜏1) − (1 − 𝜇)𝑥𝑇(𝑡 − 𝜏(𝑡))(𝑄3 − 𝑄4 + 𝑄5)𝑥(𝑡 −

𝜏(𝑡)),(7) 

 �̇�3(𝑥𝑡) ≤   𝑥𝑇(𝑡)(𝜏1
2𝑅1 + 𝜏2

2𝑅2 + 𝑟2𝑅3)𝑥(𝑡) − 𝜏1 ∫
𝑡

𝑡−𝜏1
𝑥𝑇(𝛼)𝑅1𝑥(𝛼)𝑑𝛼 

                        −𝜏2 ∫
𝑡

𝑡−𝜏2
𝑥𝑇(𝛼)𝑅2𝑥(𝛼)𝑑𝛼 − 𝑟 ∫

𝑡

𝑡−𝑟
𝑥𝑇(𝛼)𝑅3𝑥(𝛼)𝑑𝛼 (8) 

�̇�4(𝑥𝑡) ≤   
1

2
�̇�𝑇(𝑡)(𝑅4 + 𝑅5)�̇�(𝑡) − ∫

0

−𝜏1

∫
0

𝑡+𝜃

�̇�𝑇(𝛼)𝑅4�̇�(𝛼)𝑑𝛼𝑑𝜃 − ∫
0

−𝜏2

∫
0

𝑡+𝜃

�̇�𝑇(𝛼)𝑅5�̇�(𝛼)𝑑𝛼𝑑𝜃 

           (9) 

 By Lemma(2.2), from equations (8) and (9) we obtain  

 −𝜏1 ∫
𝑡

𝑡−𝜏1
𝑥𝑇(𝛼)𝑅1𝑥(𝛼)𝑑𝛼 ≤ −(∫

𝑡

𝑡−𝜏1
𝑥𝑇(𝛼)𝑑𝛼)𝑅1(∫

𝑡

𝑡−𝜏1
𝑥(𝛼)𝑑𝛼), (10) 
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 −𝜏2 ∫
𝑡

𝑡−𝜏2
𝑥𝑇(𝛼)𝑅2𝑥(𝛼)𝑑𝛼 ≤ −(∫

𝑡

𝑡−𝜏2
𝑥𝑇(𝛼)𝑑𝛼)𝑅2(∫

𝑡

𝑡−𝜏2
𝑥(𝛼)𝑑𝛼), (11) 

 −𝑟 ∫
𝑡

𝑡−𝑟
𝑥𝑇(𝛼)𝑅3𝑥(𝛼)𝑑𝛼 ≤ −(∫

𝑡

𝑡−𝑟
𝑥𝑇(𝛼)𝑑𝛼)𝑅3(∫

𝑡

𝑡−𝑟
𝑥(𝛼)𝑑𝛼), (12) 

−∫
0

−𝜏1

∫
0

𝑡+𝜃

�̇�𝑇(𝛼)𝑅4�̇�(𝛼)𝑑𝛼𝑑𝜃 ≤  −
2

𝜏1
2 (∫

0

𝜏1

∫
0

𝑡+𝜃

�̇�𝑇(𝛼)𝑑𝛼𝑑𝜃)𝑅4(∫
0

−𝜏1

∫
0

𝑡+𝜃

�̇�(𝛼)𝑑𝛼𝑑𝜃) 

                                          ≤ −
2

𝜏1
2 [𝜏1𝑥(𝑡) − ∫

𝑡

𝑡−𝜏1
𝑥(𝛼)𝑑𝛼]𝑇𝑅4[𝜏1𝑥(𝑡) − ∫

𝑡

𝑡−𝜏1
𝑥(𝛼)𝑑𝛼]

 (13) 

 −∫
0

−𝜏2
∫

0

𝑡+𝜃
�̇�𝑇(𝛼)𝑅5�̇�(𝛼)𝑑𝛼𝑑𝜃 ≤  −

2

𝜏2
2 (∫

0

𝜏2
∫

0

𝑡+𝜃
�̇�𝑇(𝛼)𝑑𝛼𝑑𝜃)𝑅5(∫

0

−𝜏2
∫

0

𝑡+𝜃
�̇�(𝛼)𝑑𝛼𝑑𝜃) 

                                           ≤ −
2

𝜏2
2 [𝜏2𝑥(𝑡) − ∫

𝑡

𝑡−𝜏2
𝑥(𝛼)𝑑𝛼]𝑇𝑅5[𝜏2𝑥(𝑡) − ∫

𝑡

𝑡−𝜏2
𝑥(𝛼)𝑑𝛼]

 (14) 

 Consider a matrices 𝑀1, 𝑀2 of appropriate dimensions, the following equation holds:  

0 = 2[𝑥𝑇(𝑡)𝑀1 + �̇�𝑇(𝑡)𝑀2][−�̇�(𝑡) + 𝐴1𝑖𝑥(𝑡) + 𝐴2𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐴3𝑖 ∫
𝑡

𝑡−𝑟
𝑥(𝛼)𝑑𝛼] (15) 

 Add the right sides of equations from (6) to (15), �̇�(𝑥𝑡) can be expressed as follows:  

 �̇�(𝑥𝑡) ≤ 𝜉𝑇(𝑡)  Φ  𝜉(𝑡) (16) 

 where  

𝜉𝑇(𝑡) = [𝑥𝑇(𝑡)  𝑥𝑇(𝑡 − 𝜏1)
𝑇(𝑡

− 𝜏2) 𝑥
𝑇(𝑡 − 𝜏(𝑡))�̇�𝑇(𝑡) ∫

𝑡

𝑡−𝑟

𝑥𝑇(𝛼)𝑑𝛼  ∫
𝑡

𝑡−𝜏1

𝑥𝑇(𝛼)𝑑𝛼  ∫
𝑡

𝑡−𝜏2

𝑥𝑇(𝛼)𝑑𝛼]. 

From (5), we can conclude that ℧ < 0, therefore, the system (4) is asymptotically stable in 

the Lyapunov sense without uncertainties.  

Remark 3.2 Consider the following T-S fuzzy with the exemption of distributed delay only 

having      

                 constant delay in (4)  

 �̇�(𝑡) = ∑𝑟
𝑖=1 𝜇𝑖(𝛾(𝑡)){𝐴1𝑖𝑥(𝑡) + 𝐴2𝑖𝑥(𝑡 − 𝜏)} 

 𝑥(𝑡) = 𝜙(𝑡),      ∀𝑡 ∈ [−𝜏, 0], (17) 

 For this system we have the following corollary.  

Corollary 3.3  For given scalar 𝜏 > 0, the T-S fuzzy system described by (17) is asymptotically 

stable, if there exist positive-definite symmetric matrices 𝑃 > 0, 𝑄𝑖 > 0(𝑖 = 1,2,3) and 

appropriate dimension matrix 𝑀3 such that the following LMI holds  

 Ω =

[
 
 
 
 
𝑄1 + 𝜏2𝑄2 − 2𝜏2𝑄3 0 𝑃 + 𝐴1𝑖

𝑇 𝑀3
𝑇 −2𝜏𝑄3

∗ −𝑄2 𝐴2𝑖
𝑇 𝑀3

𝑇 0

∗ ∗ −2𝑀3 +
1

2
𝑄3 0

∗ ∗ ∗ −𝑄2 − 2𝑄3]
 
 
 
 

< 0 (18) 
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Proof. Consider the new LKF  

 𝑉(𝑥𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡) + ∫
𝑡

𝑡−𝜏
𝑥𝑇(𝑠)𝑄1𝑥(𝛼)𝑑𝛼 + 𝜏 ∫

0

−𝜏 ∫
𝑡

𝑡+𝜃
𝑥𝑇(𝑠)𝑄2𝑥(𝛼)𝑑𝛼𝑑𝜃 

                 +    𝜏2 ∫
0

−𝜏 ∫
0

𝜃 ∫
𝑡

𝑡+𝛽
�̇�𝑇(𝛼)𝑄3�̇�(𝛼)𝑑𝛼𝑑𝛽𝑑𝜃 

Taking the time derivative of the LKF along the trajectory of the system (17) and consider 

the zero equation 0 = 2�̇�𝑇(𝑡)𝑀3[−�̇�(𝑡) + 𝐴1𝑖𝑥(𝑡) + 𝐴2𝑖𝑥(𝑡 − 𝜏)], the proof of this corollary 

is similar to Theorem 3.1 and we can show that �̇�(𝑥𝑡) ≤ Ξ1
𝑇  Ω  Ξ1 < 0.  

In the previous corollary, T-S fuzzy stability criteria with constant delay have been derived      

 based on LMI for the system (4). 

  Next, we will obtain the robust asymptotic stability, in order to get robust stability we    

consider the uncertain T-S fuzzy system by using the results of Theorem 3.1 with  

uncertainty conditions. 

In this section, based on parameter uncertainties (2), we derive the robust stability     

condition of the uncertain T-S fuzzy system based on Theorem 1. 

Theorem 4.1 For given scalars 𝜏1 ≥ 0,  𝜏2 > 0,   𝑟 > 0,   0 < 𝜇 < 1, the T-S fuzzy (3) is 

robustly asymptotically stable, if there exist positive definite matrices 𝑃 > 0, 𝑄𝑖 > 0(𝑖 =
1, … ,5), 𝑅𝑖 > 0(𝑖 = 1,… ,5), for any real matrices 𝑀1, 𝑀2 of appropriate dimensions, and a 

positive scalar 𝜀𝑖 such that the following LMI is feasible  

 ℧̅ = [
℧ 𝑀𝑇𝐵𝑖 𝜀𝑖𝐷𝑖

∗ −𝜀𝑖𝐼 0
∗ ∗ −𝜀𝑖𝐼

] < 0, (19) 

 with  

 𝑀𝑇 = [𝑀1
𝑇    0    0    0    𝑀2

𝑇    0    0    0]𝑇 , 

 𝐷𝑖
𝑇 = [𝐷1𝑖

𝑇     0    0    𝐷2𝑖
𝑇     0    𝐷3𝑖

𝑇     0    0]𝑇 , 

 and ℧ is defined as in Theorem 3.1.  

Proof. Consider the LKF as same as in Theorem 3.1. Replace 𝐴1𝑖 , 𝐴2𝑖 , 𝐴3𝑖 in the LMI (5) with      

     𝐴1𝑖 + Δ𝐴1𝑖(𝑡)  , 𝐴2𝑖 + Δ𝐴2𝑖(𝑡)  , 𝐴3𝑖 + Δ𝐴3𝑖(𝑡) respectively. Using Lemma 2.3, the matrix  

     inequality given in(19) is equivalent to the following inequality  

 ℧ + 𝜀𝑖
−1(𝑀𝑇𝐵𝑖)(𝑀

𝑇𝐵𝑖)
𝑇 + 𝜀𝑖𝐷𝑖

𝑇𝐷𝑖 < 0, (20) 

the inequality(20) is true for 𝜀𝑖 > 0. Then, the proof of Theorem 4.1 can be obtained by  

     following the proof of Theorem 3.1 in a similar way.  

3. RESULTS  

In this section, we validate the derived delay-dependent conditions with following examples, 

which show the effectiveness of established theoretical results. 

Example 5.1 Consider the T-S fuzzy time varying delay system (4) without parameter 

uncertainties and the following matrix parameters  

𝐴11 = [
−3 0
0.1 −4],    𝐴21 = [

−1 0
−1 −1],    𝐴31 = [

−2 0
0 −3],    𝐴12 = [

−6 0
0 −7.5], 
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                    𝐴22 = [
−1.6 0
0 −5],    𝐴32 = [

−2 0.1
0 −2.1]. 

 Let 𝜏1 = 0.01, 𝜏2 = 0.58, 𝜇 = 0.1 and 𝑟 = 0.1 in Theorem 3.1, then the following feasible 

solutions can be obtained by the use of MATLAB toolbox  

𝑃 = [
6.7059 −0.2764
−0.2764 2.8521 ],    𝑄1 = [

2.2969 −0.2187
−0.2187 1.3009 ],    𝑄2 = [

7.8833 −0.4215
−0.4215 7.2938 ], 

𝑄3 = [
5.4570 −0.4111
−0.4111 5.8649 ],    𝑄4 = [

2.5534 −0.2115
−0.2115 1.3482 ],    𝑄5 = [

5.1065 −0.1558
−0.1558 5.8496 ], 

𝑅1 = [
6.8232 −0.0013
−0.0013 6.8169 ],    𝑅2 = [

2.6476 −0.2512
−0.2512 2.2437 ],    𝑅3 = [

13.6752 0.3428
0.3428 19.2104], 

𝑅4 = 1.0𝑒 − 04 ∗ [
0.2980 0.0008
0.0008 0.3020],    𝑅5 = [

1.7796 0.0962
0.0962 0.7568]. 

This shows that the system (4) is asymptotically stable in the Lyapunov sense. 

Example 5.2 Consider the T-S fuzzy time varying delay system (3) with parameter 

uncertainties and the following matrices  

                        𝐴11 = [
−3 0
0.1 −4],    𝐴21 = [

−1 0
−1 −1],    𝐴31 = [

−2 0
0 −3],    𝐴12 = [

−6 0
0 −7.5],     

𝐴22 = [
−1.6 0
0 −5],    𝐴32 = [

−2 0.1
0 −2.1],    𝐵1 = 𝐵2 = [

1 0
0 1 ], 

      𝐷11 = 𝐷12 = [
−1.6 0
0 −0.05],    𝐷21 = [

−0.9 0
0 −0.7],    𝐷22 = [

−0.1 0
0 −0.4], 

       𝐷31 = [
−0.1 0
0 −0.5],    𝐷32 = [

0.15 0.2
0 −0.04] ,    𝐼 = [

1 0
0 1 ]. 

 Let 𝜏1 = 0.1, 𝜏2 = 0.2, 𝜇 = 0.1 and 𝑟 = 0.2 in Theorem 4.1, then the following feasible 

solutions can be obtained by the use of MATLAB toolbox  

𝑃 = [
113.8502 −6.5989
−6.5989 39.1794 ],    𝑄1 = [

16.6999 −2.8940
−2.8940 10.1159 ],    𝑄2 = [

94.7342 −5.4236
−5.4236 97.6428 ], 

𝑄3 = [
60.1646 −3.7025
−3.7025 68.2741 ],    𝑄4 = [

19.6681 −3.4870
−3.4870 10.9062 ],    𝑄5 = [

75.5456 −1.9613
−1.9613 86.7265 ], 

𝑅1 = [
72.0249 −0.7447
−0.7447 70.9979 ],    𝑅2 = [

65.9581 −2.6348
−2.6348 62.0863 ],    𝑅3 = [

455.9001 16.6373
16.6373 370.0059], 
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𝑅4 = [
0.8232 0.0027
0.0027 0.8237],    𝑅5 = [

3.2559 0.0519
0.0519 3.2355],    𝜀1 = 91.8366,    𝜀2 = 91.8366 

This shows that the system (3) is robustly asymptotically stable in the Lyapunov sense. 

4. CONCLUSION 

The stability problem of robust stability for the T-S fuzzy systems with mixed time-varying 

delays have been investigated. The mixed time-varying delays have considered for the proposed 

T-S fuzzy system based on the LKF which contains the information of time-varying delays(i.e. 

The upper and lower bounds ). The delay-dependent robust stability conditions investigated 

with LMIs. The obtained delay-dependent conditions ensure that the robustly asymptotically 

stability of the proposed delayed T-S fuzzy systems. Finally, numerical two examples are given 

to show the effectiveness of the derived sufficient conditions. 
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