
 http://iaeme.com/Home/journal/IJARET 2623 editor@iaeme.com

International Journal of Advanced Research in Engineering and Technology (IJARET)
Volume 11, Issue 12, December 2020, pp. 2623-2633, Article ID: IJARET_11_12_247
Available online at http://iaeme.com/Home/issue/IJARET?Volume=11&Issue=12
ISSN Print: 0976-6480 and ISSN Online: 0976-6499
DOI: 10.34218/IJARET.11.12.2020.247

 © IAEME Publication Scopus Indexed

SOFTWARE DEFECT DETECTION BY IWD
GENETIC FILTER AND NEURAL NETWORK

MODEL
Bhagyashri Deshpande

Department of Computer Science, Savitribai Phule Pune University,
Pune, Maharashtra, India

Dr. Binod Kumar
Professor at JSPM'S Rajarshi Shahu College of Engineering,

Pune, Maharashtra, India

Dr. Ajay Kumar
Professor at JSPM'S Rajarshi Shahu College of Engineering,

Pune, Maharashtra, India

ABSTRACT
Human life dependency on digital world increases day by day. Software have trust,

easy to understand for implementation and reduces labor cost. But defects in software
 leads to reduce the trust and may be harmful for the individual, community,

organization, etc. Hence software defect detection came in existence. This paper to
 has resolved this issue of software defect detection by proposed hybrid model of

Intelligent water drop genetic algorithm and neural network. Whole work divided is
into two module first feature selection from the dataset by Intelligent water drop is

 algorithm and second learning of feature set sets for desired output by neural is
network. Genetic algorithm-based feature selection increases the learning capability

 of neural network. Experimental work done on real dataset. Result shows that is
Software Defect Detection Intelligent Water Drop Neural Network (SDDIWDNN) has

 improved the software defect detection accuracy as compared to other existing
algorithm.

 Keywords: Automatic Test Case Generation, Software Testing Software Defect .
Detection, Genetic Algorithm, Neural Network

 Cite this Article: Bhagyashri Deshpande, Dr. Binod Kumar and Dr. Ajay Kumar,
 Software Defect Detection by IWD Genetic Filter and Neural Network Model.

International Journal of Advanced Research in Engineering and Technology, 11(12),
2020, pp. 2623-2633.
http://iaeme.com/Home/issue/IJARET?Volume=11&Issue=12

Software Defect Detection by IWD Genetic Filter and Neural Network Model

 http://iaeme.com/Home/journal/IJARET 2624 editor@iaeme.com

1. INTRODUCTION
Software programs has become a necessary part of the present computerized world. Software

 are utilized practically in each field of day- -day life. Along these lines, a major task in to
giving exceptionally productive programming is highly important. The nature of any project

 is incredibly influenced by the presence of defects (Bugs, error) in the modules of whole
 software. Bugs lessen the quality, trust and utilization of the product. The bug makes the

product module work undesirable in a favorable environment [1].
 Automatic project imperfection detection is a way, which analyzes whole software

modules for identifying the bugs present in the code. These models forecast some of software
shortcomings by utilizing AI procedures that gathered a ton of significance features in the
previous few years from the testing behavior. They distinguish the high hazard and afterward
it will assist with planning a proficient testing plan utilizing least exertion, time, and cost by

 organizing the more difficult analyze modules [2]. Finding productive strategies for
investigating and foreseeing bugs in programming modules is a prime field of examination in
the computer algorithm who perform this work worldwide.

Machine learning neural network model are utilized to mine information from alternate
points of view and empower engineers to recover valuable data. The AI procedures that can

 be utilized to distinguish bugs in programming datasets can be bunched. Grouping is an
information mining and AI approach, helpful in programming bug forecast. It includes order

 of programming modules into defect or normal class that is indicated by a bunch of
programming unpredictability measurements by using a grouping model that is gotten from

 before advancement projects information [3]. The measurements for programming
multifaceted nature may comprise of code size [4], McCabe's cyclomatic intricacy [5] and

 Halstead's Complexity [6]. Bunching is a sort of non-hierarchal technique that moves
information focuses among a bunch of groups until comparative thing bunches are shaped or

 an ideal set is obtained. Bunching techniques make suppositions about the informational
collection. In the event that that supposition holds, at that point it results into a decent bunch.

 Be that as it may, it is an inconsequential undertaking to fulfill all suppositions. The
 combination of various grouping strategies and by shifting info boundaries might be

 advantageous. Affiliation rule mining utilized for finding regular examples of various is
credits in a dataset [7, 8]. The associative classification most of the times provides a higher
classification as compared to other classification methods.

 Rest of paper i arranged into various sections where second section briefs about the s
various work done by researcher and third section explains the experimental work done by

 authors of the paper. Further, paper has shown experimental work in fourth section which
shows evaluation parameter-based comparison of software defect detection models. Finally,
paper is concluded with different finding of proposed SDDIWDNN model in section five.

2. RELATED WORK
H. Wei in [9] proposed a CDLH model which holds the synthetic and lexical data on the basis
of functional characteristics of code in a supervised manner. This paper has converted the real
values into binary hash codes. Hence learning of hash codes by neural network increase the

 efficiency of work as compared to other methods of defect detection. It also found that is
proposed model was feasible to work on any length of hash codes as it works efficiently on
code of length 8 to 48 digits.

Bhagyashri Deshpande, Binod Kumar and Ajay Kumar

 http://iaeme.com/Home/journal/IJARET 2625 editor@iaeme.com

M. White in [10] proposed a software defect detection technique which consider structure
of code with an identifier. This paper works on token system which have frequency count of
the token and uses the greedy technique to transform the multiple tree structure to recurrent
neural network model. Model was able to learn different granule of code for identifying the
defects in the projects.

N. Marastoni in [11] proposed a project similarity model that transforms the binary
 formatted data into two-dimension image structure. This image matrix was passed in the

convolutional neural network model for learning and finding the pattern in the image. As code
are passed in form of image so classification was done in parts which was a major restriction
of the model.

 Soumi Ghosha in [12] utilizes a nonlinear project defect detection technique. It was
 proposed to eliminate undesirable dataset features which are higher irrelevant as per

requirement. This dimension reduction of the dataset increases the detection accuracy of the
work for enhancing the software quality.

Fredrik Asplund et. al. in [13] improves the life cycle of software testing by study the
behavior of the individual software tester. Researcher has found that change in steps of testing
and modifying the structure of tester techniques improves the performance of project defect
detection.

 Tanujit et. al in [14] proposed a new hybrid model for identifying the defect in the
software based on the feature set of classes, object, codes, etc. In this paper a Hellinger tree
was developed which help in increasing the leaning capacity of feed forward neural network
model. Hellinger net model has used a skew intense distance handling class problem. Overall
use of tree structure for learning of neural network works well. But feature reduction in this
model may further increases the working accuracy.

3. PROPOSED METHODOLOGY
 Proposed paper work of software defect detection is done in this section of paper. Whole

 working of Software Defect Detection Intelligent Water Drop Neural Network
(SDDIWDNN)is segment into two modules first is feature selection for defect detection and
second is learning of feature set for defect prediction. SDDIWDNN working block diagram is
shown in fig. 1. along with explanation in the section.
Feature Selection Module: In this module of proposed work input dataset is pre-process and
few columns were select for the training of neural network by Intelligent water Drop Genetic

 Algorithm [16]. Output feature set act as late design phase parameter for the project. As
defects were mainly identified by this phase of the paper.
Pre-processing: Raw dataset columns having text and numeric values, so paper has selected

 numeric field data for learning. Hence text values were removed from the dataset [17].
Further it was found that data has few cells which are either blank or have some noisy data.
So, in this pre-processing step null or noisy values were replaced by numeric value zero. Most
of dataset feature values were related to methods, inheritance, code lines, classes, object, etc.
So, counting of any feature having null are replaced by Zero.

Software Defect Detection by IWD Genetic Filter and Neural Network Model

 http://iaeme.com/Home/journal/IJARET 2626 editor@iaeme.com

Figure 1 Block diagram of SDDIWDNN.

Feature Normalization: Normalization operation also performed by the paper by dividing is
the maximum value count of a feature to each other value of the column. This help to balance
the feature values as some of values are in range of 0 to 1 while some are in range of 1 to 100

 or 1000. So, balancing between the feature values help to identify feature equally for
detecting the defect class of software.

 (1)

 In above eq. 1 ND is normalized dataset having f features and d is size of processed
dataset.

Bhagyashri Deshpande, Binod Kumar and Ajay Kumar

 http://iaeme.com/Home/journal/IJARET 2627 editor@iaeme.com

IWD (Intelligent Water Drop)
 Different combination of feature set lead to high confusion in the system, hence genetic
 algorithm finds the feasible solution in a smaller number of iterations. Paper has utilized

intelligent water drop genetic algorithm for feature selection.

Generate Drops
 Data has different features values as per project version, class. Random feature sets were

prepared by Gaussian distribution function for finding the feasible solution [18]. Collection of
 feature sets termed as population. Each dataset featurein the system drop. Drop has a is is

binary vector having two values 1 or 0, where 1 represents a presence of feature and zero
represent absence of feature. So drops D were collection of binary vectors shown in Eq. 2an ,
having f number of feature and n number of drops in population.

 D Generate_Drops(D, f, n) (2)

Drop Soil
Distance between the features set were term as soil in the algorithm. Average value of training
input feature values was taken as soil feature values. So absolute distance between the feature
value set soil stored in a matrix. As per distance drop movement velocity get affected. This is
can be understood that if drop choose path of next drop as per lower soil value. Means lesser
the resistance more will be the velocity of soil and high chance of drop selection in the final
feature set.

Drop Movement Probability
Drop move towards another drop for increasing its strength and soil value affect this selection.
Therefore, a term selection probability shown in Eq. 3 [16]. This selection probability is is
chance of nth node movement towards N-1 node movement.

 (3)

Where i, j are position of feature set in the soil matrix. In Eq. 4 FS is feature selection as
per soil and, is random number range between 0 to 1.

 As movement towards a node may increase or decrease the velocity of drop, so Eq. 5
 show this Update velocity formula. Similarly, soil value also get change when drops

movement occur by Eq. 6.

 - (5)

 - (6)

 (7)

HD is heuristic durability a constant value range in 0-1.
 (8)

Software Defect Detection by IWD Genetic Filter and Neural Network Model

 http://iaeme.com/Home/journal/IJARET 2628 editor@iaeme.com

S1, S2 ,S3 ,V1, V2, 1 constant values having range zero to one.

Fitness Function
Solution feature set feasibility evaluated by this step of the algorithm. In this step, as per is
feature set availability training of neural network is done by passing actual values from the
dataset. After training set, value set used for testing and accuracy of trained model stored as is
fitness value.

Crossover
 As per fitness value of the chromosome features were shuffled in other chromosomes for

gaining new set of chromosomes. This new chromosome fitness value may be good as other
fitness value or poor then parent one. Selection of feature for replacement of the chromosome

 is done by random function. SDDIWDNN uses Gaussian distribution function for random
integer number generation.

Population Updation
As crossover changes the chromosomes of the population so retention of this chromosome
depends on fitness value. This can be understood if child chromosome has good fitness value
as compared to parent fitness value. Then new child is included in the population, otherwise
parent chromosome will continue in population. Hence in all situation population size will
never change from P number.

Final Feature Set
After sufficient number of iterations population updates get stopped and fittest chromosome
in the population drag out. As per presence of feature is by 1 all corresponding feature vector
is used for training, while other feature set which was 0 in the feature set were replace by 0

 value. Hence for neural network training input training vector was identified by IWD
 algorithm and desired outcome is obtained from training dataset having two class 1 for

software defect and other is 0.
Training of Neural Network: After sufficient number of training vectors three-layer neuron
is prepared for learning the image segmentation by sigmoidal activation function shown in
Eq. 9 [19, 20]. Input vector x and output vector o are used for adjusting the weights of layers
as per desired output segment class.

 (9)

After sufficient number of iterations trained neural network obtained. For testing neural is
network accept same set of feature set and predict project Defect/Normal class.

Proposed SDDIWDNN Algorithm
Input RD: //Raw Dataset
Output: TNN// TNN: Trained Neural Network

 PDPre-Processing(RD)
 NDNormalization(PD)
 D Generate_Drops(D, f, n)

 S Soil(f, ND)

 Loop 1:itr // itr: Iterations
 [S V] Drop_Movement_Probablity(S, V)

Bhagyashri Deshpande, Binod Kumar and Ajay Kumar

 http://iaeme.com/Home/journal/IJARET 2629 editor@iaeme.com

 F Fitness_Value(D, S) //F: Fitness Value

 B Best(F)// B: Best Fitness Chromosome

 CD Crossover(B, D)//CrossOver Drops

 D Update_Drops(CD, D)

 EndLoop
 F Fitness_Value(D, S) //F: Fitness Value

 B Best(F)// B: Best Fitness Chromosome

 TDFinal_Feature(PD,B) // TD: Training Dataset
 TNN Neural_Network(TD)

 Above SDDIWDNN algorithm takes raw dataset as input and gives trained neural
network for software defect detection.

4. EXPERIMENT AND RESULTS
Experimental work done on MATLAB 2016 software. Implementation of SDDIWDNN of is
software detection done on machine having i3 processor of 6is th generation with 4 GB RAM.

 Comparing model Hellinger Net taken from [14]. This model also implement on is is ed
MATLAB. Results were compared on the basis of dataset having six different project set.

 Detail description of the dataset shown in table 1, IC-DePress (Defect Prediction in is
Software Systems) [15].

Table 1 Detail Description of Software Defect Detection Model.

Parameters Values
Projects 6
Training Percentage 50%
Testing Percentage 50%
Total Sessions 13533
Feature Set 25
Training Feature 20

4.1. Results

Table 2 Accuracy Based Software Defect Detection Comparison

Projects SDDIWDNN Hellinger Net
Ant 0.879 0.8782
Camel 0.8776 0.8563
IVY 0.8568 0.8312
JEdit 0.8826 0.8691
Licene 0.7748 0.6921
POI 0.7722 0.6868

Table 2 and fig. 2 shows that proposed software defect detection model has increased the
accuracy of defect detection as compared to other existing algorithm [14]. This improvement
in defect detection achieved by Intelligent water drop genetic algorithm as this has select is

 feature values as per good combination of neural network leaning model. Hence feature
reduction by IWD genetic algorithm has increased the detection accuracy of work. It also is
shown that SDDIWDNN has average increased the accuracy value defect detection by 4.54%
as compared to Hellinger Net [14].

Software Defect Detection by IWD Genetic Filter and Neural Network Model

 http://iaeme.com/Home/journal/IJARET 2630 editor@iaeme.com

Figure 2 Average Accuracy-Based Comparison of Software Defect Detection Techniques.

Table 3 Precision Based Software Defect Detection Comparison

Projects SDDIWDNN Hellinger Net
Ant 0.9925 0.9803
Camel 0.9347 0.9744
IVY 0.9856 0.9849
JEdit 0.98 0.993
Licene 0.8524 0.9898
POI 0.833 0.9948

 Table 3 precision values shows that Hellinger Net and SDDIWDNN both have higher
 values in different project sessions. This high values in Hellinger Net are achieved by

 specifying most of the project session in one class so overall value of precision in some
projects were high.

Table 4 Recall Based Software Defect Detection Comparison.

Projects SDDIWDNN Hellinger Net
Ant 0.8833 0.8911
Camel 0.9193 0.8686
IVY 0.8629 0.8344
JEdit 0.8943 0.8729
Licene 0.8111 0.6813
POI 0.8359 0.6889

Table 4 shows that proposed software defect detection model has increased the recall of
defect detection as compared to another existing algorithm [14]. This improvement in defect
detection achieved by Intelligent water drop genetic algorithm as this has select feature is ed
values as per good combination of neural network leaning model. Hence feature reduction by

 IWD genetic algorithm has increased the detection accuracy of work. It also shown that is
SDDIWDNN has average increased the recall value defect detection by 7.09% as compared to
Hellinger Net [14].

Bhagyashri Deshpande, Binod Kumar and Ajay Kumar

 http://iaeme.com/Home/journal/IJARET 2631 editor@iaeme.com

Table 5 F-Measure Based Software Defect Detection Comparison.

Projects SDDIWDNN Hellinger Net
Ant 0.9347 0.9336
Camel 0.9269 0.9185
IVY 0.9198 0.9076
JEdit 0.9352 0.9292
Licene 0.8313 0.8071
POI 0.8345 0.8141

Figure 3 Average F-Measure Based Comparison of Software Defect Detection Techniques.

Table 5 and fig. 3 shows that proposed software defect detection model has increased the
 F-measure of defect detection as compared to other existing algorithm [14]. This

improvement in defect detection achieved by Intelligent water drop genetic algorithm as is
 this has select feature values as per good combination of neural network leaning model.

Hence feature reduction by IWD genetic algorithm has increased the detection accuracy of
work. It also shown that SDDIWDNN has average increased the F-measure value defect is
detection by 1.34% as compared to Hellinger Net [14].

5. CONCLUSIONS
 Software defect detection in early stages of development reduces the testing time and

 increasing the accuracy of work before deployment. This paper has proposed a genetic
 algorithm and neural network hybrid model for defect prediction in a software. Use of

intelligent water drop for feature reduction by selecting few drops (feature) for training of
neural network model has increased the learning of the proposed model. Extracted feature set

 not only used for training of neural network but also consider as late design phase of the
 project. Experimental work done on real dataset having project related feature values. is

Results were compared with existing methods. It obtained that proposed SDDIWDNN has is
 increases the accuracy of work by 4.54% and F-measure value enhanced by 1.34% as is

compared to Hellinger Net [14]. In future researcher can improve the prediction accuracy by
involving other genetic algorithm for reducing the feature set of datasets.

Software Defect Detection by IWD Genetic Filter and Neural Network Model

 http://iaeme.com/Home/journal/IJARET 2632 editor@iaeme.com

REFERENCES
 [1] M. Gayathri and A. Sudha, “Software defect prediction system using multilayer perceptron

 neural network with data mining,” International Journal of Recent Technology and
Engineering (IJRTE), vol. 3, no. 2, pp. 54 59, 2014. –

 [2] -pronenes Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software defect s
 prediction framework,” IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 356

370, 2011.

 [3] Shiwei, Deng (2009) prevention and detection of DSP- World Academy of “Defect Software”,
Science, Engineering and Technology, Vol. 3, Issue 10, pp. 406-409.

 [4] Trivedi, Prakriti& Pachori, Som (2010) “Modelling and analyzing of software defect
 prevention using ODC”, International Journal Advanced Computer Science and of

Applications, Vol. 1, No. 3, pp. 75- 77.

 [5] Nair, T.R. Gopalakrishan & Suma, V. (2010) pattern of software defects spanning across “The
size complexity”, International Journal of Software Engineering, Vol. 3, Issue 2, pp. 53- 70.

 [6] Lessmann, Stephen., Baesens, Bart., Mues, Christopher., & Pietsch, Swantje (2008)
 “Benchmarking classification models for software defect prediction: A proposed framework

and novel finding”, IEEE Transaction on Software Engineering, Vol. 34, Issue 4, pp. 485-496.

 [7] Chillarege and R. D. P. Siewiorek, “Experimental aluation of computer ev systems reliability,’’

IEEE Trans. Reliability, pp. 403-408, vol. 39, Oct. 1990.

 [8] Chillarege, Ram & Bhandari, I.S. & Chaar, Jarir & Halliday, M.J. & Moebus, D.S. & Ray,
Bonnie & Wong, M.-Y. (1992). Orthogonal Defect Classification - A Concept for In-Process

 Measurements. Software Engineering, IEEE Transactions on. 18. 943 - 956.
10.1109/32.177364.

 [9] H. Wei and M. Li, “Supervised deep features for software functional clone detection by

exploiting lexical and syntactical information in -source code,” in Proceedings of the Twenty

 Sixth International Joint Conference on Artificial Intelligence, pp. 3034 3040, Melbourne, –
Australia, August 2017.

 [10] M. White, M. Tufano, C. Vendome et al., “Deep learning code fragments for code clone

 detection,” in Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pp. 87 98, ACM, Singapore, September 2016. –

 [11] N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “A deep learning approach to program

 similarity,” in Proceedings of the 1st International Workshop on Machine Learning and
Software Engineering in Symbiosis, pp. 26 35, ACM, Montpellier, France, September 2018. –

 [12] Soumi Ghosha, Ajay Ranab, Vineet Kansal. "A Nonlinear Manifold Detection based Model
for Software Defect Prediction". International Conference on Computational Intelligence and
Data Science (ICCIDS 2018).

 [13] Asplund, F.. Exploratory testing: Do contextual factors influence software fault identification?
Information and Software Technology, 107, 101-111, 2019.

 [14] Tanujit Chakraborty and Ashis Kumar Chakraborty. "Hellinger Net: A Hybrid Imbalance
Learning Model to Improve Software Defect Prediction". IEEE Transactions On Reliability,
2020.

 [15] Lech Madeyski, Marian Jureczko, “Which Process Metrics Can Significantly Improve Defect
Prediction Models? An Empirical Study.”, Software Quality Journal, vol. 23, no. 3, pp. 393–
422, 2015.

 [16] Saket Jain, Dr. Rajendra Gupta. (2020). Relevant Image Fetching Using IWD Algorithm with
 Co-occurrence Matrix and Annotation Features. International Journal of Advanced Science

and Technology, 29(7), 12521 - 12535.

Bhagyashri Deshpande, Binod Kumar and Ajay Kumar

 http://iaeme.com/Home/journal/IJARET 2633 editor@iaeme.com

 [17] NJ Mohammed. "Neural Network Training by Selected Fish Schooling Genetic Algorithm
Feature for Intrusion Detection". International Journal of Computer Applications, Nov, 2020.

 [18] Ashwani Mathur "Hybrid Combination of Error Back Propagation and Genetic Algorithm for
Text Document Clustering" International Journal of Computer Trends and Technology 68.11
(2020):64-68.

 [19] Bharot, N., Verma, P., Sharma, S. et al. Distributed Denial-of-Service Attack Detection and
Mitigation Using Feature Selection and Intensive Care Request Processing Unit. Arab J Sci
Eng 43, 959 967 (2018). –

 [20] Arora and A. Saha, "Comparison of back propagation training algorithms for software defect
prediction," 2016 2nd International Conference on Contemporary Computing and Informatics
(IC3I), Noida, 2016, pp. 51-58,

