Vet Comp Orthop Traumatol 2009; 22(06): 460-466
DOI: 10.3415/VCOT-09-04-0048
Original Research
Schattauer GmbH

Effects of autologous platelet rich plasma gel and calcium phosphate biomaterials on bone healing in an ulnar ostectomy model in dogs

M. Rabillard
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
,
J.-G. Grand
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
,
E. Dalibert
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
,
B. Fellah
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
2   LIOAD INSERM Unit 791, University of Nantes, France
,
O. Gauthier
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
2   LIOAD INSERM Unit 791, University of Nantes, France
,
G.W. Niebauer
1   Department of Small Animal Surgery, Veterinary School of Nantes, Atlanpole – La Chantrerie, Nantes Cedex 3, France
› Author Affiliations
Further Information

Publication History

Received: 15 April 2009

Accepted: 24 June 2009

Publication Date:
17 December 2017 (online)

Summary

The aim of the study was to evaluate the bone healing properties of an osteopromotive platelet rich plasma (PRP) gel in combination with osteoconductive calcium phosphate (CaP) ceramic granules in a long-bone critical size defect in dogs. A standardised 2 cm long ulnar ostectomy was performed bilaterally in four dogs to compare new-bone formation by CaP matrix with and without association with PRP. Radiographic and histological evaluations were performed blindly. Radiographic evaluation was performed at three, six, nine, 12 and 16 weeks postoperatively. Quantitative measurements of new-bone formation were compared using statistical analysis. At explantation 16 weeks after surgery, no significant ossification was present, neither with CaP granules alone nor in association with PRP gel, and there was no difference of radiodensity between the groups. Qualitative histological evaluation demonstrated for both types of implants the presence of non-mineralised fibrous connective tissue around the CaP granules. New-bone formation was only present to a very small extent within the macropores of the CaP granules at the distal boneimplant interface. In our model which exhibited very limited osteoconduction, neither the CaP granules alone nor in association with PRP were sufficient to stimulate bone healing. In this canine model employing a critical size ulnar gap, the combination of CaP granules and PRP did not effectively promote bone regeneration.

 
  • References

  • 1 Szentimrey D, Fowler D, Johnston G. et al Transplantation of the canine distal ulna as a free vascularized bone graft. Vet Surg 1995; 24: 215-225.
  • 2 Bebchuk TN, Degner DA, Walshaw R. et al. Evaluation of a free vascularized medial tibial bone graft in dogs. Vet Surg 2000; 29: 128-144.
  • 3 McCartney WT. Limb lengthening in three dogs using distraction rates without a latency period. Radius/ulna, tibia, femur. Vet Comp Orthop Traumatol 2008; 21: 446-450.
  • 4 Jehn CT, Lewis DD, Farese JP. et al Transverse ulnar bone transport osteogenesis: a new technique for limb salvage for the treatment of distal radial osteosarcoma in dogs. Vet Surg 2007; 36: 324-334.
  • 5 Kraus KH, Kirber-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg 2006; 35: 232-242.
  • 6 Viateau V, Guillemin G, Bousson V. et al Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res 2007; 25: 741-749.
  • 7 Reichert JC, Saifzadeh S, Wullschleger ME. et al The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009; 30: 2149-2163.
  • 8 Daculsi G, Passuti N, Martin S. et al Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990; 24: 379-396.
  • 9 Daculsi G, Bagot D’arc M, Corlieu P. et al Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Ann Otol Rhino Laryngol 1992; 101: 669-674.
  • 10 Gauthier O, Bouler JM, Aguado E. et al Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage in bone ingrowth. Biomaterials 1998; 19: 133-139.
  • 11 Le Nihouannen D, Daculsi G, Saffarzadeh A. et al Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 2005; 36: 1086-1093.
  • 12 Field JR, McGee M, Wildenauer C. et al The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol 2009; 22: 87-95.
  • 13 Witman DM, Berry RL. A technique for improving the handling of particular cancellous bone and marrow grafts using platelet gel. J Oral Maxillofac Surg 1998; 56: 1217-1218.
  • 14 Singer AJ, Clark RA. Cutaneous wound healing. N Eng J Med 1999; 341: 738-746.
  • 15 Sacchi MC, Perrero L, Bellora A. et al The use of platelet gel, a source of multiple autologous growth factors, to improve wound healing and tissue regeneration in the elderly with malnutrition and high morbidity. J Nutr Health Aging 2001; 5: 51
  • 16 Bauer TW, Smith ST. Bioactive materials in orthopedic surgery: overview and regulatory considerations. Clin Orthop Relat Res 2002; 395: 11-22.
  • 17 Jensen TB, Rahbek O, Overgaard S. et al Platelet rich plasma and fresh frozen bone allograft as enhancement of implant fixation. An experimental study in dogs. J Orthop Res 2004; 22: 653-658.
  • 18 Tamimi FM, Montalvo S, Tresguerres I. et al A comparative study of 2 methods for obtaining platelet-rich plasma. J Oral Maxillofac Surg 2007; 65: 1084-1093.
  • 19 Gauthier O, Müller R, von Stechow D. et al In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional microcomputed tomographic, biomechanical and SEM study. Biomaterials 2005; 26: 5444-5453.
  • 20 Fellah BH, Gauthier O, Weiss P. et al Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 2008; 29: 1177-1188.
  • 21 Tuominen T, Jamsa T, Oksanen J. et al Composite implant composed of hydroxyapatite and bone morphogenetic protein in the healing of a canine ulnar defect. Ann Chir Gynaecol 2001; 90: 32-36.
  • 22 Vandewater A, Olmstead ML, Stevenson S. Partial ulnar osteotomy with free autogenous fat grafting for treatment of radius curvus in the dog. Vet Surg 1982; 11: 92-99.
  • 23 Roldan JC, Jepsen S, Miller J. et al Bone formation in the presence of platelet-rich plasma versus bone morphogenetic protein-7. Bone 2004; 34: 80-90.
  • 24 Schlegel KA, Donath K, Rupprecht S. et al De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials 2004; 25: 5387-5393.
  • 25 Han J, Meng HX, Tang JM. et al The effect of different platelet-rich plasma concentrations on proliferation and differentiation of human periodontal ligament cells in vitro. Cell Prolif 2007; 40: 241-252.
  • 26 Schnabel LV, Mohammed HO, Miller BJ. et al Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons. J Orthop Res 2007; 25: 230-240.
  • 27 Akeda K, An HS, Okuma M. et al Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 2006; 14: 1272-1280.
  • 28 Ishida K, Kuroda R, Miwa M. et al The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 2007; 13: 1103-1112.
  • 29 Takahiro K, Tetsu T, Toshiyuki T. et al Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 2005; 63: 362-369.
  • 30 Graziani F, Ivanovski S, Cei S. et al The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 2006; 17: 212-219.
  • 31 Weibrich G, Hansen T, Kleis W. et al Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone 2004; 34: 665-671.
  • 32 Wiltfang J, Kloss FR, Kessler P. et al Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 2004; 15: 187-193.
  • 33 Zechner W, Tangl S, Tepper G. et al Influence of platelet-rich plasma on osseous healing of dental implants: a histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants 2003; 18: 15-22.
  • 34 Gerard D, Carlson ER, Gotcher JE. et al Effects of platelet-rich plasma at the cellular level on healing of autologous bone-grafted mandibular defects in dogs. J Oral Maxillofac Surg 2007; 65: 721-727.
  • 35 Suba Z, Takács D, Gyulai-Gaál S. et al Facilitation of beta-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs: a histologic and histomorphometric study. Int J Oral Maxillofac Implants 2004; 19: 832-838.
  • 36 Okuda K, Tai H, Tanabe K. et al Platelet-rich plasma combined with a porous hydroxyapatite graft for the treatment of intrabony periodontal defects in humans: a comparative controlled clinical study. J Periodontol 2005; 76: 890-898.
  • 37 Fürst G, Gruber R, Tangl S. et al Sinus grafting with autogenous platelet-rich plasma and bovine hydroxyapatite. A histomorphometric study in minipigs. Clin Oral Implants Res 2003; 14: 500-508.
  • 38 Wiltfang J, Schlegel KA, Schultze-Mosgau S. et al Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseous integration and degradation?. Clin Oral Implants Res 2003; 14: 213-218.
  • 39 Tamura K, Sato S, Kishida M. et al The use of porous β-tricalcium phosphate blocks with platelet-rich plasma as an onlay bone graft biomaterial. J Periodontol 2007; 78: 315-321.
  • 40 Froum SJ, Wallace SS, Tarnow DP. et al Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: Three Bilateral Case Reports. Int J Periodontics Restorative Dent 2002; 22: 45-53.
  • 41 Hauschild G, Merten HA, Bader A. et al Bioartificial bone grafting: Tarsal joint fusion in a dog using a bioartificial composite bone graft consisting of beta-tricalciumphosphate and platelet rich plasma : a case report. Vet Comp Orthop Traumatol 2005; 18: 52-54.
  • 42 Plachokova AS, van den Dolder J, Stoelinga PJ. et al The bone regenerative effect of platelet-rich plasma in combination with an osteoconductive material in rat cranial defects. Clin Oral Implants Res 2006; 17: 305-311.
  • 43 Sarkar MR, Augat P, Shefelbine SJ. et al Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 2006; 27: 1817-1823.
  • 44 Carreon LY, Glassman SD, Anekstein Y. et al Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine 2005; 30: E243-246.
  • 45 Chang SH, Hsu YM, Wang YJ. et al Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci Mater Med 2009; 20: 23-31.
  • 46 Mazzucco L, Balbo V, Cattana E. et al Platelet-rich plasma and platelet gel preparation with Plateltex. Vox Sang 2008; 94: 202-208.
  • 47 Zhu XD, Fan HS, Xiao YM. et al Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta Biomater 2009; 5: 1311-1318.