Nuklearmedizin 2011; 50(01): 15-21
DOI: 10.3413/nukmed-0324-10-06
Original article
Schattauer GmbH

FDG uptake in primary squamous cell carcinoma of the head and neck

The relationship between overexpression of glucose transporters and hexokinases, tumour proliferation and apoptosisFDG-Aufnahme bei primären Plattenepithel- karzinomen im Kopf-/HalsbereichDer Zusammenhang zwischen Überexpression von Glukosetransportern und Hexokinasen, Tumorproliferation und Apoptose
P. Deron
1   Department of Head and Neck Surgery, Ghent University Hospital, Ghent, Belgium
,
C. Vangestel
2   Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
,
I. Goethals
5   Department of Nuclear Medicine and Radiology, Ghent University Hospital, Ghent, Belgium
,
A. De Potter
3   Department of Anatomopathology, Ghent University Hospital, Ghent, Belgium
,
M. Peeters
4   Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
,
H. Vermeersch
1   Department of Head and Neck Surgery, Ghent University Hospital, Ghent, Belgium
,
C. Van de Wiele
5   Department of Nuclear Medicine and Radiology, Ghent University Hospital, Ghent, Belgium
› Author Affiliations
Further Information

Publication History

received: 04 June 2010

accepted in revised form: 19 October 2010

Publication Date:
28 December 2017 (online)

Summary

Aim: This study aimed at assessing the relationship between over-expression of glucose transporters and hexokinases, tumour proliferation and apoptosis corrected for cellularity and partial volume corrected (pvc) FDG SUV values in primary squamous cell carcinoma of the head and neck (pSCCHN). Patients, methods: In 27 consecutive patients suffering from pSCCHN, FDG SUVmax and mean pvc values of the primary tumour were derived from a pre-surgical routine staging FDG PET/CT examination. GLUT-1, GLUT-3, HK-1, HK-3 expression, tumour proliferation (Ki-67 staining) and the number of apoptotic cells (cleaved caspase-3 staining), corrected for tumour cellularity, were subsequently assessed on the corresponding post-surgically obtained biopsies and tumour specimens. FDG SUVmax and mean pvc values of pSCCHN were correlated with the corresponding histological findings. Results: FDG SUV max and mean pvc values correlated significantly: with GLUT-1 scores r = 0.408 (p = 0.04) and r = 0.439 (p = 0.03) as well as with the number of apoptotic cells r = 0.529 (p = 0.008) and r = 0.484 (p = 0.017). The number of apoptotic cells also correlated to GLUT-3 scores: r = 0.62 (p = 0.001) and GLUT-1 scores r = 0.528 (p = 0.008). Conclusion: FDG SUV pvc proved significantly related to GLUT-1 expression by tumour cells and to the absolute number of apoptotic cells. The latter finding warrants further exploration and confirmation by additional studies.

Zusammenfassung

Ziel: In dieser Studie sollte der Zusammenhang zwischen Überexpression von Glukosetransportern und Hexokinasen, Tumorproliferation und Apoptose, korrigiert nach Zellzahl sowie den nach partiellem Volumen korrigierten (pvc) FDG-SUV-Werten, am primären Kopf/Hals-Plattenepithelkarzinom (pSCCHN) untersucht werden. Patienten, Methoden: Bei 27 aufeinanderfolgenden Patienten mit pSCCHN wurden die maximalen und mittleren FDG-SUV-Werte (pcv) des Primärtumors aus einer präoperativen FDG PET/CT-Routineuntersuchung für das Staging ermittelt. Die Expression von GLUT-1, GLUT-3, HK-1 und HK-3, die Tumorproliferation (Ki67-Färbung) und die Anzahl der apoptotischen Zellen (Färbung für aktivierte Caspase-3), korrigiert nach der Tumorzellzahl, wurden anschließend in den entsprechenden postoperativen Tumor-Bioptaten und Tumorproben untersucht. Die maximalen und mittleren FDG-SUV-Werte (pcv) des pSCCHN wurden mit den entsprechenden histologischen Befunden korreliert. Ergebnisse: Maximale und mittlere FDG-SUV-Werte (pcv) korrelierten signifikant mit den GLUT-1-Werten: r = 0,408 (p = 0,04) und r = 0,439 (p = 0,03) sowie mit der Anzahl apoptotischer Zellen: r = 0,529 (p = 0,008) und r = 0,484 (p = 0,017). Die Anzahl apoptotischer Zellen korrelierte auch mit den GLUC-3-Werten: r = 0,62 (p = 0,001) und den GLUC-1-Werten: r = 0,528 (p = 0,008). Schlussfolgerung: Ein signifikanter Zusammenhang zwischen FDG-SUV-Werten (pcv), GLUC-1-Expression in Tumorzellen und absoluter Anzahl apoptotischer Zellen wurde nachgewiesen. Das letztere Ergebnis muss in zusätzlichen Studien weiter untersucht und bestätigt werden.

 
  • References

  • 1 Chin D, Boyle GM, Porceddu S. et al. Head and neck cancer: past, present and future. Expert Rev Anticancer Ther 2006; 6: 1111-1118.
  • 2 De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994; 74: 2836-2842.
  • 3 Duijsings D, Houweling M, Vaandrager AB. et al. Hexadecyl-phosphocholine causes rapid cell death in canine mammary tumour cells. Eur J Pharmacol 2004; 502: 185-193.
  • 4 Fujibayashi Y, Waki A, Sakahara H. et al. Transient increase in glycolytic metabolism in cultured tumor cells immediately after exposure to ionizing radiation: from gene expression to deoxyglucose uptake. Radiat Res 1997; 147: 729-734.
  • 5 Furuta M, Hasegawa M, Hayakawa K. et al. Rapid rise in FDG uptake in an irradiated human tumor xenograft. Eur J Nucl Med 1997; 24: 435-438.
  • 6 Haberkorn U, Reinhardt M, Strauss LG. et al. Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992; 33: 1981-1987.
  • 7 Jacob R, Welkoborsky HJ, Mann WJ. et al. [Fluorine- 18] fluorodeoxyglucose positron emission tomography, DNA ploidy and growth fraction in squamous-cell carcinomas of the head and neck. ORL J Otorhinolaryngol Relat Spec 2001; 63: 307-313.
  • 8 Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol 2001; 18: 247-256.
  • 9 Kunkel M, Reichert TE, Benz P. et al. Over-expression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003; 97: 1015-1024.
  • 10 Li SJ, Guo W, Ren GX. et al. Expression of Glut-1 in primary and recurrent head and neck squamous cell carcinomas, and compared with 2-[18F] fluoro- 2-deoxy-D-glucose accumulation in positron emission tomography. Br J Oral Maxillofacial Surg 2008; 46: 180-186.
  • 11 Linecker A, Kermer C, Sulzbacher I. et al. Uptake of 18F-FLT and 18F-FDG in primary head and neck cancer correlates with survival. Nuklearmedizin 2008; 47: 80-85.
  • 12 Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005; 202: 654-662.
  • 13 Machtay M, Natwa M, Andrel J. et al. Pretreatment FDG-PET standardized uptake values as a prognostic factor for outcome in head and neck cancer. Head Neck 2009; 31: 195-201.
  • 14 Maruyama I, Sadato N, Waki A. et al. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: a PET study. J Nucl Med 1999; 40: 1085-1090.
  • 15 Minn H, Lapela M, Klemi PJ. et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997; 38: 1907-1911.
  • 16 Parkin DM, Läärä E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer 1988; 41: 184-197.
  • 17 Rota Kops E, Krause BJ. The influence of filtered- back projection and iterative reconstruction on partial volume correction in PET. Nuklearmedizin 2005; 44: 99-106.
  • 18 Schmidt M, Schmalenbach M, Jungehülsing M. et al. 18F-FDG PET for detecting recurrent head and neck cancer, local lymph node involvement and distant metastases. Comparison of qualitative visual and semiquantitative analysis. Nuklearmedizin 2004; 43: 91-101.
  • 19 Smith TA, Blaylock MG. Treatment of breast tumor cells in vitro with the mitochondrial membrane potential dissipater valinomycin increases 18F-FDG incorporation. J Nucl Med 2007; 48: 1308-1312.
  • 20 Srinivas SM, Dhurairaj T, Basu S. et al. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 2009; 23: 341-348.
  • 21 Tian M, Zhang H, Nakasone Y. et al. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur J Nucl Med Mol Imaging 2004; 31: 5-12.
  • 22 Tylski P, Stute S, Grotus N. et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med 2010; 51: 268-276.
  • 23 Van Waarde A, Been LB, Ishiwata K. et al. Early response of sigma-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy: an in vitro study in glioma cells. J Nucl Med 2006; 47: 1538-1545.
  • 24 Vermeersch H, Loose D, Ham H. et al. Nuclear medicine imaging for the assessment of primary and recurrent head and neck carcinoma using routinely available tracers. Eur J Nucl Med 2003; 30: 1689-1700.
  • 25 Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314.
  • 26 Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 2003; 89: 3-9.
  • 27 Young H, Baum R, Cremerius U. et al. Measurement of clinical and sub-clinical tumor response using [18F]fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999; 35: 1773-1782.